These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 160245)

  • 21. Movement of scallop myosin on Nitella actin filaments: regulation by calcium.
    Vale RD; Szent-Gyorgyi AG; Sheetz MP
    Proc Natl Acad Sci U S A; 1984 Nov; 81(21):6775-8. PubMed ID: 6238334
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cooperativity in scallop myosin.
    Chantler PD; Sellers JR; Szent-Györgyi AG
    Biochemistry; 1981 Jan; 20(1):210-6. PubMed ID: 6110441
    [No Abstract]   [Full Text] [Related]  

  • 23. An immunological approach to myosin light-chain function in thick filament linked regulation. 1. Characterization, specificity, and cross-reactivity of anti-scallop myosin heavy- and light-chain antibodies by competitive, solid-phase radioimmunoassay.
    Wallimann T; Szent-Györgyi AG
    Biochemistry; 1981 Mar; 20(5):1176-87. PubMed ID: 6784748
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Segmental flexibility and head-head interaction in scallop myosin. A study using saturation transfer electron paramagnetic resonance spectroscopy.
    Wells C; Bagshaw CR
    J Mol Biol; 1983 Feb; 164(1):137-57. PubMed ID: 6302270
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Calcium regulation of molluscan myosin ATPase in the absence of actin.
    Wells C; Bagshaw CR
    Nature; 1985 Feb 21-27; 313(6004):696-7. PubMed ID: 3156278
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Light-chain movement and regulation in scallop myosin.
    Hardwicke PM; Wallimann T; Szent-Györgyi AG
    Nature; 1983 Feb; 301(5900):478-82. PubMed ID: 6218413
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of removal and reconstitution of myosin regulatory light chain and troponin C on the Ca(2+)-sensitive ATPase activity of myofibrils from scallop striated muscle.
    Shiraishi F; Morimoto S; Nishita K; Ojima T; Ohtsuki I
    J Biochem; 1999 Dec; 126(6):1020-4. PubMed ID: 10578052
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ca2+ binding to myosin regulatory light chain affects the conformation of the N-terminus of essential light chain and its binding to actin.
    Nieznanski K; Nieznanska H; Skowronek K; Kasprzak AA; Stepkowski D
    Arch Biochem Biophys; 2003 Sep; 417(2):153-8. PubMed ID: 12941296
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cleavage points of rabbit skeletal myosin light chains selectively modified in situ by limited proteolysis: structural characteristics of the neoformed isozymes.
    Burgat JM; Ghelis C; Cardinaud R
    FEBS Lett; 1995 Aug; 369(2-3):255-9. PubMed ID: 7649267
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Essential light chain modulates phosphorylation-dependent regulation of smooth muscle myosin.
    Katoh T; Konishi K; Yazawa M
    J Biochem; 2002 May; 131(5):641-5. PubMed ID: 11983069
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Myosin from abdominal flexor muscle in a crayfish, Procambarus clarki Girard.
    Ko J; Horiuchi S; Yamaguchi M
    J Biochem; 1979 Feb; 85(2):541-8. PubMed ID: 154514
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interaction of myosin subfragment-1 with actin. III. Effect of cleavage of the subfragment-1 heavy chain on its interaction with actin.
    Yamamoto K; Sekine T
    J Biochem; 1979 Dec; 86(6):1869-81. PubMed ID: 160913
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Myosin heavy chain-light chain recombinations and interactions between the two classes of light chains.
    Wagner PD; Stone DB
    J Biol Chem; 1983 Jul; 258(14):8876-82. PubMed ID: 6223039
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of the symmetric model for myosin-linked regulation: effect of site-directed mutations in the regulatory light chain on scallop myosin.
    Colegrave M; Patel H; Offer G; Chantler PD
    Biochem J; 2003 Aug; 374(Pt 1):89-96. PubMed ID: 12765546
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electron microscopy of scallop myosin. Location of regulatory light chains.
    Flicker PF; Wallimann T; Vibert P
    J Mol Biol; 1983 Sep; 169(3):723-41. PubMed ID: 6415287
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of regulatory light chain on chymotryptic digestion of scallop adductor myosin.
    Konno K; Watanabe S
    J Biochem; 1985 Jun; 97(6):1645-51. PubMed ID: 3928614
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of scallop myosin by mutant regulatory light chains.
    Goodwin EB; Leinwand LA; Szent-Györgyi AG
    J Mol Biol; 1990 Nov; 216(1):85-93. PubMed ID: 2146399
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proximity of regulatory light chains in scallop myosin.
    Hardwicke PM; Szent-Györgyi AG
    J Mol Biol; 1985 May; 183(2):203-11. PubMed ID: 3159905
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Calcium binding and calcium-sensitivity of heavy meromyosin and subfragment-1 from squid (Todarodes pacificus) mantle and scallop (Patinopecten yessoensis) adductor muscles.
    Kamiya S; Konno K
    Comp Biochem Physiol B; 1989; 92(3):481-6. PubMed ID: 2523274
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Isolation and characterization of myosin from amoebae of Physarum polycephalum.
    Kohama K; Takano-Ohmuro H; Tanaka T; Yamaguchi Y; Kohama T
    J Biol Chem; 1986 Jun; 261(17):8022-7. PubMed ID: 2940248
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.