BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 16024608)

  • 21. Targeting the acute promyelocytic leukemia-associated fusion proteins PML/RARα and PLZF/RARα with interfering peptides.
    Beez S; Demmer P; Puccetti E
    PLoS One; 2012; 7(11):e48636. PubMed ID: 23152790
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Formation of PML/RAR alpha high molecular weight nuclear complexes through the PML coiled-coil region is essential for the PML/RAR alpha-mediated retinoic acid response.
    Grignani F; Gelmetti V; Fanelli M; Rogaia D; De Matteis S; Ferrara FF; Bonci D; Grignani F; Nervi C; Pelicci PG
    Oncogene; 1999 Nov; 18(46):6313-21. PubMed ID: 10597230
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reduced retinoic acid-sensitivities of nuclear receptor corepressor binding to PML- and PLZF-RARalpha underlie molecular pathogenesis and treatment of acute promyelocytic leukemia.
    Guidez F; Ivins S; Zhu J; Söderström M; Waxman S; Zelent A
    Blood; 1998 Apr; 91(8):2634-42. PubMed ID: 9531570
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Down-stream regions of the POZ-domain influence the interaction of the t(11;17)-associated PLZF/RARalpha fusion protein with the histone-deacetylase recruiting co-repressor complex.
    Puccetti E; Sennewald B; Fosca-Ferrara F; Boehrer S; Bianchini A; Hoelzer D; Ottmann OG; Nervi C; Ruthardt M
    Hematol J; 2001; 2(6):385-92. PubMed ID: 11920278
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The integrity of the charged pocket in the BTB/POZ domain is essential for the phenotype induced by the leukemia-associated t(11;17) fusion protein PLZF/RARalpha.
    Puccetti E; Zheng X; Brambilla D; Seshire A; Beissert T; Boehrer S; Nürnberger H; Hoelzer D; Ottmann OG; Nervi C; Ruthardt M
    Cancer Res; 2005 Jul; 65(14):6080-8. PubMed ID: 16024608
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Acute promyelocytic leukemia, histone deacetylase, and response to retinoids].
    Jeanteur P
    Bull Cancer; 1998 Apr; 85(4):301-3. PubMed ID: 9752292
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acute promyelocytic leukemia with a PLZF-RARalpha fusion protein.
    Jansen JH; Löwenberg B
    Semin Hematol; 2001 Jan; 38(1):37-41. PubMed ID: 11172538
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling acute promyelocytic leukemia in the mouse: new insights in the pathogenesis of human leukemias.
    Merghoub T; Gurrieri C; Piazza F; Pandolfi PP
    Blood Cells Mol Dis; 2001; 27(1):231-48. PubMed ID: 11358384
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pathways of retinoic acid- or arsenic trioxide-induced PML/RARalpha catabolism, role of oncogene degradation in disease remission.
    Zhu J; Lallemand-Breitenbach V; de Thé H
    Oncogene; 2001 Oct; 20(49):7257-65. PubMed ID: 11704854
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vivo analysis of the molecular pathogenesis of acute promyelocytic leukemia in the mouse and its therapeutic implications.
    He LZ; Merghoub T; Pandolfi PP
    Oncogene; 1999 Sep; 18(38):5278-92. PubMed ID: 10498880
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Retinoic acid receptors, hematopoiesis and leukemogenesis.
    Collins SJ
    Curr Opin Hematol; 2008 Jul; 15(4):346-51. PubMed ID: 18536573
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of the modulation of transcriptional activity in myelopoiesis and leukemogenesis.
    Behre G; Zhang P; Zhang DE; Tenen DG
    Methods; 1999 Mar; 17(3):231-7. PubMed ID: 10080908
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of histone deacetylases in acute leukemia.
    Fenrick R; Hiebert SW
    J Cell Biochem Suppl; 1998; 30-31():194-202. PubMed ID: 9893271
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Histone deacetylases: a common molecular target for differentiation treatment of acute myeloid leukemias?
    Minucci S; Nervi C; Lo Coco F; Pelicci PG
    Oncogene; 2001 May; 20(24):3110-5. PubMed ID: 11420727
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Epigenetic gene silencing in acute promyelocytic leukemia.
    Villa R; De Santis F; Gutierrez A; Minucci S; Pelicci PG; Di Croce L
    Biochem Pharmacol; 2004 Sep; 68(6):1247-54. PubMed ID: 15313423
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of the molecular genetics of acute promyelocytic leukemia in mouse models.
    Rego EM; Pandolfi PP
    Semin Hematol; 2001 Jan; 38(1):54-70. PubMed ID: 11172540
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of E2A-PBX1 in leukemogenesis.
    Aspland SE; Bendall HH; Murre C
    Oncogene; 2001 Sep; 20(40):5708-17. PubMed ID: 11607820
    [No Abstract]   [Full Text] [Related]  

  • 38. Dimerization: a versatile switch for oncogenesis.
    So CW; Cleary ML
    Blood; 2004 Aug; 104(4):919-22. PubMed ID: 15130940
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MOZ and MORF, two large MYSTic HATs in normal and cancer stem cells.
    Yang XJ; Ullah M
    Oncogene; 2007 Aug; 26(37):5408-19. PubMed ID: 17694082
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Leukemia-associated fusion proteins. Multiple mechanisms of action to drive cell transformation.
    Insinga A; Pelicci PG; Inucci S
    Cell Cycle; 2005 Jan; 4(1):67-9. PubMed ID: 15611639
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.