These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 16024652)

  • 1. Differences in glycosylation patterns of heat shock protein, gp96: implications for prostate cancer prevention.
    Suriano R; Ghosh SK; Ashok BT; Mittelman A; Chen Y; Banerjee A; Tiwari RK
    Cancer Res; 2005 Jul; 65(14):6466-75. PubMed ID: 16024652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sialic acid content of tissue-specific gp96 and its potential role in modulating gp96-macrophage interactions.
    Suriano R; Ghosh SK; Chaudhuri D; Mittelman A; Banerjee A; Tiwari RK
    Glycobiology; 2009 Dec; 19(12):1427-35. PubMed ID: 19578160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Association of peptides with heat shock protein gp96 occurs in vivo and not after cell lysis.
    Ménoret A; Peng P; Srivastava PK
    Biochem Biophys Res Commun; 1999 Sep; 262(3):813-8. PubMed ID: 10471407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preventive and therapeutic effect of tumor derived heat shock protein, gp96, in an experimental prostate cancer model.
    Yedavelli SP; Guo L; Daou ME; Srivastava PK; Mittelman A; Tiwari RK
    Int J Mol Med; 1999 Sep; 4(3):243-8. PubMed ID: 10425272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suspension culture process of MethA tumor cell for the production of heat-shock protein glycoprotein 96: process optimization in spinner flasks.
    Tang YJ; Li HM; Hamel JF
    Biotechnol Prog; 2007; 23(6):1363-77. PubMed ID: 17944484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Secreted heat shock protein gp96-Ig: an innovative vaccine approach.
    Strbo N; Podack ER
    Am J Reprod Immunol; 2008 May; 59(5):407-16. PubMed ID: 18405311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of SRC-1 in the promotion of prostate cancer cell growth and tumor progression.
    Agoulnik IU; Vaid A; Bingman WE; Erdeme H; Frolov A; Smith CL; Ayala G; Ittmann MM; Weigel NL
    Cancer Res; 2005 Sep; 65(17):7959-67. PubMed ID: 16140968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heat shock protein gp96 and cancer immunotherapy.
    Peibin Y; Shude Y; Changzhi H
    Chin Med Sci J; 2002 Dec; 17(4):251-6. PubMed ID: 12901515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification of heat shock protein-peptide complexes for use in vaccination against cancers and intracellular pathogens.
    Srivastava PK
    Methods; 1997 Jun; 12(2):165-71. PubMed ID: 9184380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Therapeutic cancer vaccines.
    Srivastava PK
    Curr Opin Immunol; 2006 Apr; 18(2):201-5. PubMed ID: 16464565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Secreted frizzled-related protein 4 inhibits proliferation and metastatic potential in prostate cancer.
    Horvath LG; Lelliott JE; Kench JG; Lee CS; Williams ED; Saunders DN; Grygiel JJ; Sutherland RL; Henshall SM
    Prostate; 2007 Jul; 67(10):1081-90. PubMed ID: 17476687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constitutive activation of the 41- and 43-kDa mitogen-activated protein (MAP) kinases in the progression of prostate cancer to an androgen-independent state.
    Oka H; Chatani Y; Kohno M; Kawakita M; Ogawa O
    Int J Urol; 2005 Oct; 12(10):899-905. PubMed ID: 16323984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacologic basis for the enhanced efficacy of dutasteride against prostatic cancers.
    Xu Y; Dalrymple SL; Becker RE; Denmeade SR; Isaacs JT
    Clin Cancer Res; 2006 Jul; 12(13):4072-9. PubMed ID: 16818707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat shock proteins gp96 as immunogens in cancer patients.
    Parmiani G; De Filippo A; Pilla L; Castelli C; Rivoltini L
    Int J Hyperthermia; 2006 May; 22(3):223-7. PubMed ID: 16754342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA microarray analysis reveals metastasis-associated genes in rat prostate cancer cell lines.
    Reyes I; Tiwari R; Geliebter J; Reyes N
    Biomedica; 2007 Jun; 27(2):190-203. PubMed ID: 17713630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of the immunomodulatory role of the heat shock protein gp96.
    Robert J; Cohen N; Maniero GD; Goyos A; Morales H; Gantress J
    Cell Mol Biol (Noisy-le-grand); 2003 Mar; 49(2):263-75. PubMed ID: 12887107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting heat shock proteins for immunotherapy in multiple myeloma: generation of myeloma-specific CTLs using dendritic cells pulsed with tumor-derived gp96.
    Qian J; Wang S; Yang J; Xie J; Lin P; Freeman ME; Yi Q
    Clin Cancer Res; 2005 Dec; 11(24 Pt 1):8808-15. PubMed ID: 16361569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of MUC1 glycoprotein on prostate cancer for selection of targeting molecules.
    Burke PA; Gregg JP; Bakhtiar B; Beckett LA; Denardo GL; Albrecht H; De Vere White RW; De Nardo SJ
    Int J Oncol; 2006 Jul; 29(1):49-55. PubMed ID: 16773184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. O-glycosylation regulates LNCaP prostate cancer cell susceptibility to apoptosis induced by galectin-1.
    Valenzuela HF; Pace KE; Cabrera PV; White R; Porvari K; Kaija H; Vihko P; Baum LG
    Cancer Res; 2007 Jul; 67(13):6155-62. PubMed ID: 17616672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased Hsp27 after androgen ablation facilitates androgen-independent progression in prostate cancer via signal transducers and activators of transcription 3-mediated suppression of apoptosis.
    Rocchi P; Beraldi E; Ettinger S; Fazli L; Vessella RL; Nelson C; Gleave M
    Cancer Res; 2005 Dec; 65(23):11083-93. PubMed ID: 16322258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.