BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 16024818)

  • 21. Complex patterns of transcription at the insertion site of a retrotransposon in the mouse.
    Druker R; Bruxner TJ; Lehrbach NJ; Whitelaw E
    Nucleic Acids Res; 2004; 32(19):5800-8. PubMed ID: 15520464
    [TBL] [Abstract][Full Text] [Related]  

  • 22. L1 antisense promoter drives tissue-specific transcription of human genes.
    Mätlik K; Redik K; Speek M
    J Biomed Biotechnol; 2006; 2006(1):71753. PubMed ID: 16877819
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A sensitive RNase protection assay to detect transcripts from potentially functional human endogenous L1 retrotransposons.
    Woodcock DM; Williamson MR; Doherty JP
    Biochem Biophys Res Commun; 1996 May; 222(2):460-5. PubMed ID: 8670227
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Demethylation of a LINE-1 antisense promoter in the cMet locus impairs Met signalling through induction of illegitimate transcription.
    Weber B; Kimhi S; Howard G; Eden A; Lyko F
    Oncogene; 2010 Oct; 29(43):5775-84. PubMed ID: 20562909
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tad, a Neurospora LINE-like retrotransposon exhibits a complex pattern of transcription.
    Sewell E; Kinsey JA
    Mol Gen Genet; 1996 Aug; 252(1-2):137-45. PubMed ID: 8804386
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Human-specific antisense transcripts induced by the insertion of transposable element.
    Kim DS; Hahn Y
    Int J Mol Med; 2010 Jul; 26(1):151-7. PubMed ID: 20514435
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Site-specific retrotransposition of L1 elements within human alphoid satellite sequences.
    Laurent AM; Puechberty J; Prades C; Gimenez S; Roizès G
    Genomics; 1997 Nov; 46(1):127-32. PubMed ID: 9403067
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Requirements for polyadenylation at the 3' end of LINE-1 elements.
    Belancio VP; Whelton M; Deininger P
    Gene; 2007 Apr; 390(1-2):98-107. PubMed ID: 17023124
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of multiple transcription initiation, polyadenylation, and splice sites in the Drosophila melanogaster TART family of telomeric retrotransposons.
    Maxwell PH; Belote JM; Levis RW
    Nucleic Acids Res; 2006; 34(19):5498-507. PubMed ID: 17020919
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transposable elements as a source of genetic innovation: expression and evolution of a family of retrotransposon-derived neogenes in mammals.
    Brandt J; Schrauth S; Veith AM; Froschauer A; Haneke T; Schultheis C; Gessler M; Leimeister C; Volff JN
    Gene; 2005 Jan; 345(1):101-11. PubMed ID: 15716091
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Retrotransposon RNA expression and evidence for retrotransposition events in human oocytes.
    Georgiou I; Noutsopoulos D; Dimitriadou E; Markopoulos G; Apergi A; Lazaros L; Vaxevanoglou T; Pantos K; Syrrou M; Tzavaras T
    Hum Mol Genet; 2009 Apr; 18(7):1221-8. PubMed ID: 19147684
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiple transcription initiation sites, alternative splicing, and differential polyadenylation contribute to the complexity of human neurofibromatosis 2 transcripts.
    Chang LS; Akhmametyeva EM; Wu Y; Zhu L; Welling DB
    Genomics; 2002 Jan; 79(1):63-76. PubMed ID: 11827459
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Full-length L1 elements have arisen recently in the same 1-kb region of the gorilla and human genomes.
    DeBerardinis RJ; Kazazian HH
    J Mol Evol; 1998 Sep; 47(3):292-301. PubMed ID: 9732456
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Activation of a MMTV/mdr3 fusion transcript from a cryptic viral promoter is stimulated by mdr-derived sequences located in intron I.
    Lepage P; Underhill DA; Gros P
    Virology; 1995 Jul; 210(2):244-53. PubMed ID: 7618265
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Human retroelements may introduce intragenic polyadenylation signals.
    Roy-Engel AM; El-Sawy M; Farooq L; Odom GL; Perepelitsa-Belancio V; Bruch H; Oyeniran OO; Deininger PL
    Cytogenet Genome Res; 2005; 110(1-4):365-71. PubMed ID: 16093688
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acquisition of endonuclease specificity during evolution of L1 retrotransposon.
    Ichiyanagi K; Nishihara H; Duvernell DD; Okada N
    Mol Biol Evol; 2007 Sep; 24(9):2009-15. PubMed ID: 17602167
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intronic polyadenylation signal sequences and alternate splicing generate human soluble Flt1 variants and regulate the abundance of soluble Flt1 in the placenta.
    Thomas CP; Andrews JI; Liu KZ
    FASEB J; 2007 Dec; 21(14):3885-95. PubMed ID: 17615362
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Establishment of a genome-wide and quantitative protocol for assessment of transcriptional activity at human retrotransposon L1 antisense promoters.
    Ishiguro K; Higashino S; Hirakawa H; Sato S; Aizawa Y
    Genes Genet Syst; 2018 Apr; 92(5):243-249. PubMed ID: 28381655
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Linear decay of retrotransposon antisense bias across genes is contingent upon tissue specificity.
    Linker S; Hedges DJ
    PLoS One; 2013; 8(11):e79402. PubMed ID: 24244495
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of parathyroid hormone-related peptide (PTHrP) gene transcription: cell- and tissue-specific promoter utilization mediated by multiple positive and negative cis-acting DNA elements.
    Campos RV; Wang C; Drucker DJ
    Mol Endocrinol; 1992 Oct; 6(10):1642-52. PubMed ID: 1280327
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.