BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 16025107)

  • 1. Ephrin-As and neural activity are required for eye-specific patterning during retinogeniculate mapping.
    Pfeiffenberger C; Cutforth T; Woods G; Yamada J; Rentería RC; Copenhagen DR; Flanagan JG; Feldheim DA
    Nat Neurosci; 2005 Aug; 8(8):1022-7. PubMed ID: 16025107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ephrin-A2 and -A5 influence patterning of normal and novel retinal projections to the thalamus: conserved mapping mechanisms in visual and auditory thalamic targets.
    Ellsworth CA; Lyckman AW; Feldheim DA; Flanagan JG; Sur M
    J Comp Neurol; 2005 Jul; 488(2):140-51. PubMed ID: 15924339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ephrin-As mediate targeting of eye-specific projections to the lateral geniculate nucleus.
    Huberman AD; Murray KD; Warland DK; Feldheim DA; Chapman B
    Nat Neurosci; 2005 Aug; 8(8):1013-21. PubMed ID: 16025110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ephrin-as guide the formation of functional maps in the visual cortex.
    Cang J; Kaneko M; Yamada J; Woods G; Stryker MP; Feldheim DA
    Neuron; 2005 Nov; 48(4):577-89. PubMed ID: 16301175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ephrin-As and patterned retinal activity act together in the development of topographic maps in the primary visual system.
    Pfeiffenberger C; Yamada J; Feldheim DA
    J Neurosci; 2006 Dec; 26(50):12873-84. PubMed ID: 17167078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional topography and integration of the contralateral and ipsilateral retinocollicular projections of ephrin-A-/- mice.
    Haustead DJ; Lukehurst SS; Clutton GT; Bartlett CA; Dunlop SA; Arrese CA; Sherrard RM; Rodger J
    J Neurosci; 2008 Jul; 28(29):7376-86. PubMed ID: 18632942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Topographic guidance labels in a sensory projection to the forebrain.
    Feldheim DA; Vanderhaeghen P; Hansen MJ; Frisén J; Lu Q; Barbacid M; Flanagan JG
    Neuron; 1998 Dec; 21(6):1303-13. PubMed ID: 9883724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A role for ephrin-As in maintaining topographic organization in register across interconnected central visual pathways.
    Wilks TA; Rodger J; Harvey AR
    Eur J Neurosci; 2010 Feb; 31(4):613-22. PubMed ID: 20384808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eye-specific retinogeniculate segregation proceeds normally following disruption of patterned spontaneous retinal activity.
    Speer CM; Sun C; Liets LC; Stafford BK; Chapman B; Cheng HJ
    Neural Dev; 2014 Nov; 9():25. PubMed ID: 25377639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of On and Off retinal pathways and retinogeniculate projections.
    Chalupa LM; Günhan E
    Prog Retin Eye Res; 2004 Jan; 23(1):31-51. PubMed ID: 14766316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ephrin-A5 modulates the topographic mapping and connectivity of commissural axons in murine hippocampus.
    Otal R; Burgaya F; Frisén J; Soriano E; Martínez A
    Neuroscience; 2006 Aug; 141(1):109-21. PubMed ID: 16690216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Switching retinogeniculate axon laterality leads to normal targeting but abnormal eye-specific segregation that is activity dependent.
    Rebsam A; Petros TJ; Mason CA
    J Neurosci; 2009 Nov; 29(47):14855-63. PubMed ID: 19940181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ephrin-A2 and ephrin-A5 guide contralateral targeting but not topographic mapping of ventral cochlear nucleus axons.
    Abdul-Latif ML; Salazar JA; Marshak S; Dinh ML; Cramer KS
    Neural Dev; 2015 Dec; 10():27. PubMed ID: 26666565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absence of plateau potentials in dLGN cells leads to a breakdown in retinogeniculate refinement.
    Dilger EK; Krahe TE; Morhardt DR; Seabrook TA; Shin HS; Guido W
    J Neurosci; 2015 Feb; 35(8):3652-62. PubMed ID: 25716863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced plasticity of retinothalamic projections in an ephrin-A2/A5 double mutant.
    Lyckman AW; Jhaveri S; Feldheim DA; Vanderhaeghen P; Flanagan JG; Sur M
    J Neurosci; 2001 Oct; 21(19):7684-90. PubMed ID: 11567058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High frequency, synchronized bursting drives eye-specific segregation of retinogeniculate projections.
    Torborg CL; Hansen KA; Feller MB
    Nat Neurosci; 2005 Jan; 8(1):72-8. PubMed ID: 15608630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limited functional convergence of eye-specific inputs in the retinogeniculate pathway of the mouse.
    Bauer J; Weiler S; Fernholz MHP; Laubender D; Scheuss V; Hübener M; Bonhoeffer T; Rose T
    Neuron; 2021 Aug; 109(15):2457-2468.e12. PubMed ID: 34146468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of ephrin-A2 and ephrin-A5 in sensorimotor control and gating.
    Yates NJ; Martin-Iverson MT; Rodger J
    Behav Brain Res; 2014 Dec; 275():225-33. PubMed ID: 25200515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retinal and Tectal "Driver-Like" Inputs Converge in the Shell of the Mouse Dorsal Lateral Geniculate Nucleus.
    Bickford ME; Zhou N; Krahe TE; Govindaiah G; Guido W
    J Neurosci; 2015 Jul; 35(29):10523-34. PubMed ID: 26203147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A reassessment of the role of activity in the formation of eye-specific retinogeniculate projections.
    Chalupa LM
    Brain Res Rev; 2007 Oct; 55(2):228-36. PubMed ID: 17433447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.