BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 16025107)

  • 21. Phr1 is required for proper retinocollicular targeting of nasal-dorsal retinal ganglion cells.
    Vo BQ; Bloom AJ; Culican SM
    Vis Neurosci; 2011 Mar; 28(2):175-81. PubMed ID: 21324225
    [TBL] [Abstract][Full Text] [Related]  

  • 22. EphA5 and ephrin-A2 expression during optic nerve regeneration: a 'two-edged sword'.
    Symonds AC; King CE; Bartlett CA; Sauvé Y; Lund RD; Beazley LD; Dunlop SA; Rodger J
    Eur J Neurosci; 2007 Feb; 25(3):744-52. PubMed ID: 17328773
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CKAMP44 controls synaptic function and strength of relay neurons during early development of the dorsal lateral geniculate nucleus.
    Hetsch F; Wang D; Chen X; Zhang J; Aslam M; Kegel M; Tonner H; Grus F; von Engelhardt J
    J Physiol; 2022 Aug; 600(15):3549-3565. PubMed ID: 35770953
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Failure to maintain eye-specific segregation in nob, a mutant with abnormally patterned retinal activity.
    Demas J; Sagdullaev BT; Green E; Jaubert-Miazza L; McCall MA; Gregg RG; Wong RO; Guido W
    Neuron; 2006 Apr; 50(2):247-59. PubMed ID: 16630836
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Eye-specific retinogeniculate segregation independent of normal neuronal activity.
    Huberman AD; Wang GY; Liets LC; Collins OA; Chapman B; Chalupa LM
    Science; 2003 May; 300(5621):994-8. PubMed ID: 12738869
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Retinal axon response to ephrin-as shows a graded, concentration-dependent transition from growth promotion to inhibition.
    Hansen MJ; Dallal GE; Flanagan JG
    Neuron; 2004 Jun; 42(5):717-30. PubMed ID: 15182713
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Organization of the dorsal lateral geniculate nucleus in the mouse.
    Kerschensteiner D; Guido W
    Vis Neurosci; 2017 Jan; 34():E008. PubMed ID: 28965501
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Online LI-rTMS during a Visual Learning Task: Differential Impacts on Visual Circuit and Behavioral Plasticity in Adult Ephrin-A2A5
    Poh EZ; Harvey AR; Makowiecki K; Rodger J
    eNeuro; 2018; 5(1):. PubMed ID: 29464193
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetic analysis of ephrin-A2 and ephrin-A5 shows their requirement in multiple aspects of retinocollicular mapping.
    Feldheim DA; Kim YI; Bergemann AD; Frisén J; Barbacid M; Flanagan JG
    Neuron; 2000 Mar; 25(3):563-74. PubMed ID: 10774725
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mistargeting hippocampal axons by expression of a truncated Eph receptor.
    Yue Y; Chen ZY; Gale NW; Blair-Flynn J; Hu TJ; Yue X; Cooper M; Crockett DP; Yancopoulos GD; Tessarollo L; Zhou R
    Proc Natl Acad Sci U S A; 2002 Aug; 99(16):10777-82. PubMed ID: 12124402
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancement of transmission at the developing retinogeniculate synapse.
    Mooney R; Madison DV; Shatz CJ
    Neuron; 1993 May; 10(5):815-25. PubMed ID: 8388224
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of hippocampal synaptic plasticity by the tyrosine kinase receptor, REK7/EphA5, and its ligand, AL-1/Ephrin-A5.
    Gao WQ; Shinsky N; Armanini MP; Moran P; Zheng JL; Mendoza-Ramirez JL; Phillips HS; Winslow JW; Caras IW
    Mol Cell Neurosci; 1998 Aug; 11(5-6):247-59. PubMed ID: 9698392
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phr1 regulates retinogeniculate targeting independent of activity and ephrin-A signalling.
    Culican SM; Bloom AJ; Weiner JA; DiAntonio A
    Mol Cell Neurosci; 2009 Jul; 41(3):304-12. PubMed ID: 19371781
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transient up-regulation of retinal EphA3 and EphA5, but not ephrin-A2, coincides with re-establishment of a topographic map during optic nerve regeneration in goldfish.
    King CE; Wallace A; Rodger J; Bartlett C; Beazley LD; Dunlop SA
    Exp Neurol; 2003 Oct; 183(2):593-9. PubMed ID: 14552900
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An evolving view of retinogeniculate transmission.
    Litvina EY; Chen C
    Vis Neurosci; 2017 Jan; 34():E013. PubMed ID: 28965513
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Physiological and anatomical study of the retinogeniculate projections in the mouse].
    Métin C; Godement P; Saillour P; Imbert M
    C R Seances Acad Sci III; 1983 Jan; 296(3):157-62. PubMed ID: 6404518
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Competitive interactions between retinal ganglion cells during prenatal development.
    Shatz CJ
    J Neurobiol; 1990 Jan; 21(1):197-211. PubMed ID: 2181063
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Activity-dependent regulation of retinogeniculate signaling by metabotropic glutamate receptors.
    Govindaiah G; Wang T; Gillette MU; Cox CL
    J Neurosci; 2012 Sep; 32(37):12820-31. PubMed ID: 22973005
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Repetitive grooming and sensorimotor abnormalities in an ephrin-A knockout model for Autism Spectrum Disorders.
    Wurzman R; Forcelli PA; Griffey CJ; Kromer LF
    Behav Brain Res; 2015 Feb; 278():115-28. PubMed ID: 25281279
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Capacity of the retinogeniculate pathway to reorganize following ablation of visual cortical areas in developing and mature cats.
    Lomber SG; Payne BR; Cornwell P; Pearson HE
    J Comp Neurol; 1993 Dec; 338(3):432-57. PubMed ID: 8113448
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.