These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 16025166)

  • 1. Preparation of Cu and CuFe Prussian Blue derivative nanoparticles using the apoferritin cavity as nanoreactor.
    Gálvez N; Sánchez P; Domínguez-Vera JM
    Dalton Trans; 2005 Aug; (15):2492-4. PubMed ID: 16025166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viral capsids as templates for the production of monodisperse Prussian blue nanoparticles.
    de la Escosura A; Verwegen M; Sikkema FD; Comellas-Aragonès M; Kirilyuk A; Rasing T; Nolte RJ; Cornelissen JJ
    Chem Commun (Camb); 2008 Apr; (13):1542-4. PubMed ID: 18354793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of nickel and chromium nanoparticles using the protein cage of apoferritin.
    Okuda M; Iwahori K; Yamashita I; Yoshimura H
    Biotechnol Bioeng; 2003 Oct; 84(2):187-94. PubMed ID: 12966575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MRI relaxation properties of water-soluble apoferritin-encapsulated gadolinium oxide-hydroxide nanoparticles.
    Sánchez P; Valero E; Gálvez N; Domínguez-Vera JM; Marinone M; Poletti G; Corti M; Lascialfari A
    Dalton Trans; 2009 Feb; (5):800-4. PubMed ID: 19156273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of Prussian blue nanoparticles with a hollow interior by controlled chemical etching.
    Hu M; Furukawa S; Ohtani R; Sukegawa H; Nemoto Y; Reboul J; Kitagawa S; Yamauchi Y
    Angew Chem Int Ed Engl; 2012 Jan; 51(4):984-8. PubMed ID: 22180131
    [No Abstract]   [Full Text] [Related]  

  • 6. Synthesis, characterization, and immobilization of Prussian blue-modified Au nanoparticles: application to electrocatalytic reduction of H2O2.
    Qiu JD; Peng HZ; Liang RP; Li J; Xia XH
    Langmuir; 2007 Feb; 23(4):2133-7. PubMed ID: 17279705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manipulation of chemically synthesized FePt nanoparticles in water: core-shell silica/FePt nanocomposites.
    Salgueiriño-Maceira V; Correa-Duarte MA; Farle M
    Small; 2005 Nov; 1(11):1073-6. PubMed ID: 17193398
    [No Abstract]   [Full Text] [Related]  

  • 8. Production of apoferritin-based bioinorganic hybrid nanoparticles by bacterial fermentation followed by self-assembly.
    Jääskeläinen A; Harinen RR; Lamminmäki U; Korpimäki T; Pelliniemi LJ; Soukka T; Virta M
    Small; 2007 Aug; 3(8):1362-7. PubMed ID: 17600800
    [No Abstract]   [Full Text] [Related]  

  • 9. Probing atomic structure in magnetic core/shell nanoparticles using synchrotron radiation.
    Baker SH; Roy M; Thornton SC; Qureshi M; Binns C
    J Phys Condens Matter; 2010 Sep; 22(38):385301. PubMed ID: 21386550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemoselective derivatization of a bionanoparticle by click reaction and ATRP reaction.
    Zeng Q; Li T; Cash B; Li S; Xie F; Wang Q
    Chem Commun (Camb); 2007 Apr; (14):1453-5. PubMed ID: 17389990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of dopamine at the nanogram level based on the formation of Prussian blue nanoparticles by resonance Rayleigh scattering technique.
    Dong JX; Wen W; Li NB; Luo HQ
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Feb; 86():527-32. PubMed ID: 22137013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and studies of water-soluble Prussian Blue-type nanoparticles into chitosan beads.
    Folch B; Larionova J; Guari Y; Molvinger K; Luna C; Sangregorio C; Innocenti C; Caneschi A; Guérin C
    Phys Chem Chem Phys; 2010 Oct; 12(39):12760-70. PubMed ID: 20820470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and activity of apoferritin-stabilized gold nanoparticles.
    Zhang L; Swift J; Butts CA; Yerubandi V; Dmochowski IJ
    J Inorg Biochem; 2007 Nov; 101(11-12):1719-29. PubMed ID: 17723241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast colorimetric detection of copper ions using L-cysteine functionalized gold nanoparticles.
    Yang W; Gooding JJ; He Z; Li Q; Chen G
    J Nanosci Nanotechnol; 2007 Feb; 7(2):712-6. PubMed ID: 17450820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal induced phase transitions and structural relaxation in apoferritin encapsulated copper nanoparticles.
    Ceolín M; Gálvez N; Domínguez-Vera JM
    Phys Chem Chem Phys; 2008 Aug; 10(29):4327-32. PubMed ID: 18633553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photo-induced charge transfer in Prussian blue analogues as detected by photoacoustic spectroscopy.
    Reguera E; Marín E; Calderón A; Rodríguez-Hernández J
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Sep; 68(1):191-7. PubMed ID: 17321791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and magnetic characterization of Pd nanoparticles encapsulated in apoferritin.
    Gálvez N; Valero E; Domínguez-Vera JM; Masciocchi N; Guagliardi A; Clemente-León M; Coronado E
    Nanotechnology; 2010 Jul; 21(27):274017. PubMed ID: 20571204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Ag and Au nanoparticles on the SERS of 4-aminobenzenethiol assembled on powdered copper.
    Kim K; Lee HS
    J Phys Chem B; 2005 Oct; 109(40):18929-34. PubMed ID: 16853437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new antibody immobilization strategy based on electro-deposition of gold nanoparticles and Prussian Blue for label-free amperometric immunosensor.
    He X; Yuan R; Chai Y; Zhang Y; Shi Y
    Biotechnol Lett; 2007 Jan; 29(1):149-55. PubMed ID: 17091382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Versatile apoferritin nanoparticle labels for assay of protein.
    Liu G; Wang J; Wu H; Lin Y
    Anal Chem; 2006 Nov; 78(21):7417-23. PubMed ID: 17073407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.