These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

41 related articles for article (PubMed ID: 1602525)

  • 1. Changes in force production, blood lactate and EMG activity in the 400-m sprint.
    Nummela A; Vuorimaa T; Rusko H
    J Sports Sci; 1992 Jun; 10(3):217-28. PubMed ID: 1602525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coordination Aspects of an Effective Sprint Start.
    Borysiuk Z; Waśkiewicz Z; Piechota K; Pakosz P; Konieczny M; Błaszczyszyn M; Nikolaidis PT; Rosemann T; Knechtle B
    Front Physiol; 2018; 9():1138. PubMed ID: 30174619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of Stride Length During the Approach Run in the 400-M Hurdles.
    Ozaki Y; Ueda T; Fukuda T; Inai T; Kido E; Narisako D
    J Hum Kinet; 2019 Oct; 69():59-67. PubMed ID: 31666889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EMG activities and ground reaction forces during fatigued and nonfatigued sprinting.
    Nummela A; Rusko H; Mero A
    Med Sci Sports Exerc; 1994 May; 26(5):605-9. PubMed ID: 8007809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes of Anaerobic Power and Lactate Concentration following Intense Glycolytic Efforts in Elite and Sub-Elite 400-meter Sprinters.
    Mastalerz A; Johne M; Mróz A; Bojarczuk A; Stastny P; Petr M; Kolinger D; Pisz A; Vostatkova P; Maculewicz E
    J Hum Kinet; 2024 Mar; 91(Spec Issue):165-174. PubMed ID: 38689580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Problem of Effort Distribution in Heavy Glycolytic Trials with Special Reference to the 400 m Dash in Track and Field.
    Cicchella A
    Biology (Basel); 2022 Jan; 11(2):. PubMed ID: 35205083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Lower Limb Muscle Electromyographic Activity during 400 m Indoor Sprinting among Elite Female Athletes: A Cross-Sectional Study.
    Pietraszewski P; Gołaś A; Krzysztofik M; Śrutwa M; Zając A
    Int J Environ Res Public Health; 2021 Dec; 18(24):. PubMed ID: 34948784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Muscle Activity During 200 m Indoor Curve and Straight Sprinting in Elite Female Sprinters.
    Pietraszewski P; Gołaś A; Krzysztofik M
    J Hum Kinet; 2021 Oct; 80():309-316. PubMed ID: 34868438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal Training Sequences to Develop Lower Body Force, Velocity, Power, and Jump Height: A Systematic Review with Meta-Analysis.
    Marshall J; Bishop C; Turner A; Haff GG
    Sports Med; 2021 Jun; 51(6):1245-1271. PubMed ID: 33666895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comment on "Hurdle Clearance Detection and Spatiotemporal Analysis in 400 Meters Hurdles Races Using Shoe-Mounted Magnetic and Inertial Sensor".
    Schmidt M; Alt T; Nolte K; Jaitner T
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32466252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hurdle Clearance Detection and Spatiotemporal Analysis in 400 Meters Hurdles Races Using Shoe-Mounted Magnetic and Inertial Sensors.
    Falbriard M; Mohr M; Aminian K
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sprint running: from fundamental mechanics to practice-a review.
    Haugen T; McGhie D; Ettema G
    Eur J Appl Physiol; 2019 Jun; 119(6):1273-1287. PubMed ID: 30963240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intra-athlete and inter-group comparisons: Running pace and step characteristics of elite athletes in the 400-m hurdles.
    Otsuka M; Isaka T
    PLoS One; 2019; 14(3):e0204185. PubMed ID: 30921329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of pre-exercise alkalosis on the decrease in VO2 at the end of all-out exercise.
    Thomas C; Delfour-Peyrethon R; Bishop DJ; Perrey S; Leprêtre PM; Dorel S; Hanon C
    Eur J Appl Physiol; 2016 Jan; 116(1):85-95. PubMed ID: 26297325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mental fatigue does not affect maximal anaerobic exercise performance.
    Martin K; Thompson KG; Keegan R; Ball N; Rattray B
    Eur J Appl Physiol; 2015 Apr; 115(4):715-25. PubMed ID: 25425259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-intensity interval training, solutions to the programming puzzle. Part II: anaerobic energy, neuromuscular load and practical applications.
    Buchheit M; Laursen PB
    Sports Med; 2013 Oct; 43(10):927-54. PubMed ID: 23832851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sprinter's motor signature does not change with fatigue.
    Choukou MA; Laffaye G; Heugas-De Panafieu AM
    Eur J Appl Physiol; 2012 Apr; 112(4):1557-68. PubMed ID: 21853307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatigue after short (100-m), medium (200-m) and long (400-m) treadmill sprints.
    Tomazin K; Morin JB; Strojnik V; Podpecan A; Millet GY
    Eur J Appl Physiol; 2012 Mar; 112(3):1027-36. PubMed ID: 21735216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of different first 200-m pacing strategies on blood lactate and biomechanical parameters of the 400-m sprint.
    Saraslanidis PJ; Panoutsakopoulos V; Tsalis GA; Kyprianou E
    Eur J Appl Physiol; 2011 Aug; 111(8):1579-90. PubMed ID: 21190037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen uptake and blood metabolic responses to a 400-m run.
    Hanon C; Lepretre PM; Bishop D; Thomas C
    Eur J Appl Physiol; 2010 May; 109(2):233-40. PubMed ID: 20063105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.