BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 16026164)

  • 1. Functional regulation of the opposing (p)ppGpp synthetase/hydrolase activities of RelMtb from Mycobacterium tuberculosis.
    Avarbock A; Avarbock D; Teh JS; Buckstein M; Wang ZM; Rubin H
    Biochemistry; 2005 Jul; 44(29):9913-23. PubMed ID: 16026164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential regulation of opposing RelMtb activities by the aminoacylation state of a tRNA.ribosome.mRNA.RelMtb complex.
    Avarbock D; Avarbock A; Rubin H
    Biochemistry; 2000 Sep; 39(38):11640-8. PubMed ID: 10995231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutational analysis of the (p)ppGpp synthetase activity of the Rel enzyme of Mycobacterium tuberculosis.
    Bag S; Das B; Dasgupta S; Bhadra RK
    Arch Microbiol; 2014 Aug; 196(8):575-88. PubMed ID: 24859914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Essential roles for Mycobacterium tuberculosis Rel beyond the production of (p)ppGpp.
    Weiss LA; Stallings CL
    J Bacteriol; 2013 Dec; 195(24):5629-38. PubMed ID: 24123821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and hydrolysis of pppGpp in mycobacteria: a ligand mediated conformational switch in Rel.
    Jain V; Saleem-Batcha R; Chatterji D
    Biophys Chem; 2007 Apr; 127(1-2):41-50. PubMed ID: 17188418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystallographic and solution structure of the N-terminal domain of the Rel protein from Mycobacterium tuberculosis.
    Singal B; Balakrishna AM; Nartey W; Manimekalai MSS; Jeyakanthan J; GrĂ¼ber G
    FEBS Lett; 2017 Aug; 591(15):2323-2337. PubMed ID: 28672070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative genomics and evolution of genes encoding bacterial (p)ppGpp synthetases/hydrolases (the Rel, RelA and SpoT proteins).
    Mittenhuber G
    J Mol Microbiol Biotechnol; 2001 Oct; 3(4):585-600. PubMed ID: 11545276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and preliminary characterization of four Rel homologues from pathogenic bacteria: Implications for species-specific inhibitor design.
    Hegde V; Raman AS; Patil PR; Prakash B
    Protein Expr Purif; 2021 Jan; 177():105760. PubMed ID: 33002609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intramolecular regulation of the opposing (p)ppGpp catalytic activities of Rel(Seq), the Rel/Spo enzyme from Streptococcus equisimilis.
    Mechold U; Murphy H; Brown L; Cashel M
    J Bacteriol; 2002 Jun; 184(11):2878-88. PubMed ID: 12003927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional roles of streptokinase C-terminal flexible peptide in active site formation and substrate recognition in plasminogen activation.
    Zhai P; Wakeham N; Loy JA; Zhang XC
    Biochemistry; 2003 Jan; 42(1):114-20. PubMed ID: 12515545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Making sense of a missense mutation: characterization of MutT2, a Nudix hydrolase from Mycobacterium tuberculosis, and the G58R mutant encoded in W-Beijing strains of M. tuberculosis.
    Moreland NJ; Charlier C; Dingley AJ; Baker EN; Lott JS
    Biochemistry; 2009 Feb; 48(4):699-708. PubMed ID: 19115962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning and characterization of a bifunctional RelA/SpoT homologue from Mycobacterium tuberculosis.
    Avarbock D; Salem J; Li LS; Wang ZM; Rubin H
    Gene; 1999 Jun; 233(1-2):261-9. PubMed ID: 10375643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The three-dimensional structure of N-succinyldiaminopimelate aminotransferase from Mycobacterium tuberculosis.
    Weyand S; Kefala G; Weiss MS
    J Mol Biol; 2007 Mar; 367(3):825-38. PubMed ID: 17292400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational antagonism between opposing active sites in a bifunctional RelA/SpoT homolog modulates (p)ppGpp metabolism during the stringent response [corrected].
    Hogg T; Mechold U; Malke H; Cashel M; Hilgenfeld R
    Cell; 2004 Apr; 117(1):57-68. PubMed ID: 15066282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel pppGpp binding site at the C-terminal region of the Rel enzyme from Mycobacterium smegmatis.
    Syal K; Joshi H; Chatterji D; Jain V
    FEBS J; 2015 Oct; 282(19):3773-85. PubMed ID: 26179484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a bifunctional enzyme with (p)ppGpp-hydrolase/synthase activity in Leptospira interrogans.
    He P; Deng C; Liu B; Zeng L; Zhao W; Zhang Y; Jiang X; Guo X; Qin J
    FEMS Microbiol Lett; 2013 Nov; 348(2):133-42. PubMed ID: 24111633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyphosphate kinase is involved in stress-induced mprAB-sigE-rel signalling in mycobacteria.
    Sureka K; Dey S; Datta P; Singh AK; Dasgupta A; Rodrigue S; Basu J; Kundu M
    Mol Microbiol; 2007 Jul; 65(2):261-76. PubMed ID: 17630969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacteria possessing two RelA/SpoT-like proteins have evolved a specific stringent response involving the acyl carrier protein-SpoT interaction.
    Battesti A; Bouveret E
    J Bacteriol; 2009 Jan; 191(2):616-24. PubMed ID: 18996989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological analysis of the stringent response elicited in an extreme thermophilic bacterium, Thermus thermophilus.
    Kasai K; Nishizawa T; Takahashi K; Hosaka T; Aoki H; Ochi K
    J Bacteriol; 2006 Oct; 188(20):7111-22. PubMed ID: 17015650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stringent response in Vibrio cholerae: genetic analysis of spoT gene function and identification of a novel (p)ppGpp synthetase gene.
    Das B; Pal RR; Bag S; Bhadra RK
    Mol Microbiol; 2009 Apr; 72(2):380-98. PubMed ID: 19298370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.