These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 16026167)

  • 41. Interpretation of the temperature-dependent color of blue copper protein mutants.
    Comba P; Müller V; Remenyi R
    J Inorg Biochem; 2004 May; 98(5):896-902. PubMed ID: 15134935
    [TBL] [Abstract][Full Text] [Related]  

  • 42. NMR detection of multiple transitions to low-populated states in azurin.
    Korzhnev DM; Karlsson BG; Orekhov VY; Billeter M
    Protein Sci; 2003 Jan; 12(1):56-65. PubMed ID: 12493828
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An amicyanin C-terminal loop mutant where the active-site histidine donor cannot be protonated.
    Remenyi R; Jeuken LJ; Comba P; Canters GW
    J Biol Inorg Chem; 2001 Jan; 6(1):23-6. PubMed ID: 11191220
    [TBL] [Abstract][Full Text] [Related]  

  • 44. DFT/electrostatic calculations of pK(a) values in cytochrome c oxidase.
    Popović DM; Quenneville J; Stuchebrukhov AA
    J Phys Chem B; 2005 Mar; 109(8):3616-26. PubMed ID: 16851400
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spectroscopic characterizations of bridging cysteine ligand variants of an engineered Cu2(Scys)2 CuA azurin.
    Hwang HJ; Nagraj N; Lu Y
    Inorg Chem; 2006 Jan; 45(1):102-7. PubMed ID: 16390045
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The structural homology of amicyanin from Thiobacillus versutus to plant plastocyanins.
    Van Beeumen J; Van Bun S; Canters GW; Lommen A; Chothia C
    J Biol Chem; 1991 Mar; 266(8):4869-77. PubMed ID: 2002033
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of histidine 6 protonation on the active site structure and electron-transfer capabilities of pseudoazurin from Achromobacter cycloclastes.
    Sato K; Dennison C
    Biochemistry; 2002 Jan; 41(1):120-30. PubMed ID: 11772009
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Basic requirements for a metal-binding site in a protein: the influence of loop shortening on the cupredoxin azurin.
    Li C; Yanagisawa S; Martins BM; Messerschmidt A; Banfield MJ; Dennison C
    Proc Natl Acad Sci U S A; 2006 May; 103(19):7258-63. PubMed ID: 16651527
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A thin-film electrochemical study of the "blue" copper proteins, auracyanin A and auracyanin B, from the photosynthetic bacterium Chloroflexus aurantiacus: the reduction potential as a function of pH.
    Rooney MB; Honeychurch MJ; Selvaraj FM; Blankenship RE; Bond AM; Freeman HC
    J Biol Inorg Chem; 2003 Feb; 8(3):306-17. PubMed ID: 12589566
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The amino acid sequence of rusticyanin isolated from Thiobacillus ferrooxidans.
    Yano T; Fukumori Y; Yamanaka T
    FEBS Lett; 1991 Aug; 288(1-2):159-62. PubMed ID: 1879547
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Atomic resolution crystal structures, EXAFS, and quantum chemical studies of rusticyanin and its two mutants provide insight into its unusual properties.
    Barrett ML; Harvey I; Sundararajan M; Surendran R; Hall JF; Ellis MJ; Hough MA; Strange RW; Hillier IH; Hasnain SS
    Biochemistry; 2006 Mar; 45(9):2927-39. PubMed ID: 16503647
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of a novel disulfide bond and engineered electrostatic interactions on the thermostability of azurin.
    Tigerström A; Schwarz F; Karlsson G; Okvist M; Alvarez-Rúa C; Maeder D; Robb FT; Sjölin L
    Biochemistry; 2004 Oct; 43(39):12563-74. PubMed ID: 15449946
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Influence of loop shortening on the metal binding site of cupredoxin pseudoazurin.
    Velarde M; Huber R; Yanagisawa S; Dennison C; Messerschmidt A
    Biochemistry; 2007 Sep; 46(35):9981-91. PubMed ID: 17685636
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Introduction of a pi-pi interaction at the active site of a cupredoxin: characterization of the Met16Phe Pseudoazurin mutant.
    Yanagisawa S; Sato K; Kikuchi M; Kohzuma T; Dennison C
    Biochemistry; 2003 Jun; 42(22):6853-62. PubMed ID: 12779340
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Role of copper in folding and stability of cupredoxin-like copper-carrier protein CopC.
    Hussain F; Sedlak E; Wittung-Stafshede P
    Arch Biochem Biophys; 2007 Nov; 467(1):58-66. PubMed ID: 17889826
    [TBL] [Abstract][Full Text] [Related]  

  • 56. How the dynamics of the metal-binding loop region controls the acid transition in cupredoxins.
    Paltrinieri L; Borsari M; Battistuzzi G; Sola M; Dennison C; de Groot BL; Corni S; Bortolotti CA
    Biochemistry; 2013 Oct; 52(42):7397-404. PubMed ID: 24063705
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Density functional study of EPR parameters and spin-density distribution of azurin and other blue copper proteins.
    Remenyi C; Reviakine R; Kaupp M
    J Phys Chem B; 2007 Jul; 111(28):8290-304. PubMed ID: 17592871
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reorganization energy of the CuA center in purple azurin: impact of the mixed valence-to-trapped valence state transition.
    Farver O; Hwang HJ; Lu Y; Pecht I
    J Phys Chem B; 2007 Jun; 111(24):6690-4. PubMed ID: 17274649
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Free energy for blue copper protein unfolding determined by electrospray ionisation mass spectrometry.
    Cunsolo V; Foti S; La Rosa C; Saletti R; Canters GW; Verbeet MP
    Rapid Commun Mass Spectrom; 2001; 15(19):1817-25. PubMed ID: 11565099
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Functionally specified protein signatures distinctive for each of the different blue copper proteins.
    Giri AV; Anishetty S; Gautam P
    BMC Bioinformatics; 2004 Sep; 5():127. PubMed ID: 15357880
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.