These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 16026180)

  • 1. Diverse modes of axon elaboration in the developing neocortex.
    Portera-Cailliau C; Weimer RM; De Paola V; Caroni P; Svoboda K
    PLoS Biol; 2005 Aug; 3(8):e272. PubMed ID: 16026180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo observations of timecourse and distribution of morphological dynamics in Xenopus retinotectal axon arbors.
    Witte S; Stier H; Cline HT
    J Neurobiol; 1996 Oct; 31(2):219-34. PubMed ID: 8885202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence from in vivo imaging that synaptogenesis guides the growth and branching of axonal arbors by two distinct mechanisms.
    Meyer MP; Smith SJ
    J Neurosci; 2006 Mar; 26(13):3604-14. PubMed ID: 16571769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disorganized microtubules underlie the formation of retraction bulbs and the failure of axonal regeneration.
    Ertürk A; Hellal F; Enes J; Bradke F
    J Neurosci; 2007 Aug; 27(34):9169-80. PubMed ID: 17715353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of target recognition by interstitial axon branching along developing cortical axons.
    Bastmeyer M; O'Leary DD
    J Neurosci; 1996 Feb; 16(4):1450-9. PubMed ID: 8778296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Axonal projection, input and output synapses, and synaptic physiology of Cajal-Retzius cells in the developing rat neocortex.
    Radnikow G; Feldmeyer D; Lübke J
    J Neurosci; 2002 Aug; 22(16):6908-19. PubMed ID: 12177189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth cones are not required for initial establishment of polarity or differential axon branch growth in cultured hippocampal neurons.
    Ruthel G; Hollenbeck PJ
    J Neurosci; 2000 Mar; 20(6):2266-74. PubMed ID: 10704502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental Profile, Morphology, and Synaptic Connectivity of Cajal-Retzius Cells in the Postnatal Mouse Hippocampus.
    Anstötz M; Huang H; Marchionni I; Haumann I; Maccaferri G; Lübke JH
    Cereb Cortex; 2016 Feb; 26(2):855-72. PubMed ID: 26582498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fibroblast growth factor-2 promotes axon branching of cortical neurons by influencing morphology and behavior of the primary growth cone.
    Szebenyi G; Dent EW; Callaway JL; Seys C; Lueth H; Kalil K
    J Neurosci; 2001 Jun; 21(11):3932-41. PubMed ID: 11356881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Common mechanisms underlying growth cone guidance and axon branching.
    Kalil K; Szebenyi G; Dent EW
    J Neurobiol; 2000 Aug; 44(2):145-58. PubMed ID: 10934318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light-induced calcium influx into retinal axons is regulated by presynaptic nicotinic acetylcholine receptor activity in vivo.
    Edwards JA; Cline HT
    J Neurophysiol; 1999 Feb; 81(2):895-907. PubMed ID: 10036287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphology, input-output relations and synaptic connectivity of Cajal-Retzius cells in layer 1 of the developing neocortex of CXCR4-EGFP mice.
    Anstötz M; Cosgrove KE; Hack I; Mugnaini E; Maccaferri G; Lübke JH
    Brain Struct Funct; 2014 Nov; 219(6):2119-39. PubMed ID: 24026287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pre-synaptic and post-synaptic neuronal activity supports the axon development of callosal projection neurons during different post-natal periods in the mouse cerebral cortex.
    Mizuno H; Hirano T; Tagawa Y
    Eur J Neurosci; 2010 Feb; 31(3):410-24. PubMed ID: 20105242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thalamocortical arbors extend beyond single cortical barrels: an in vivo intracellular tracing study in rat.
    Arnold PB; Li CX; Waters RS
    Exp Brain Res; 2001 Jan; 136(2):152-68. PubMed ID: 11206278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interstitial branches develop from active regions of the axon demarcated by the primary growth cone during pausing behaviors.
    Szebenyi G; Callaway JL; Dent EW; Kalil K
    J Neurosci; 1998 Oct; 18(19):7930-40. PubMed ID: 9742160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Live imaging of regenerating lamprey spinal axons.
    Zhang G; Jin LQ; Sul JY; Haydon PG; Selzer ME
    Neurorehabil Neural Repair; 2005 Mar; 19(1):46-57. PubMed ID: 15673843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inaccuracies in initial growth and arborization of chick retinotectal axons followed by course corrections and axon remodeling to develop topographic order.
    Nakamura H; O'Leary DD
    J Neurosci; 1989 Nov; 9(11):3776-95. PubMed ID: 2585055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Segregation and coactivation of developing neocortical layer 1 neurons.
    Soda T; Nakashima R; Watanabe D; Nakajima K; Pastan I; Nakanishi S
    J Neurosci; 2003 Jul; 23(15):6272-9. PubMed ID: 12867512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synapse-dependent and independent mechanisms of thalamocortical axon branching are regulated by neuronal activity.
    Matsumoto N; Hoshiko M; Sugo N; Fukazawa Y; Yamamoto N
    Dev Neurobiol; 2016 Mar; 76(3):323-36. PubMed ID: 26061995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antagonistic forces generated by cytoplasmic dynein and myosin-II during growth cone turning and axonal retraction.
    Myers KA; Tint I; Nadar CV; He Y; Black MM; Baas PW
    Traffic; 2006 Oct; 7(10):1333-51. PubMed ID: 16911591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.