These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 16026180)

  • 21. Dynamics of terminal arbor formation and target approach of retinotectal axons in living zebrafish embryos: a time-lapse study of single axons.
    Kaethner RJ; Stuermer CA
    J Neurosci; 1992 Aug; 12(8):3257-71. PubMed ID: 1494955
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reorganization and movement of microtubules in axonal growth cones and developing interstitial branches.
    Dent EW; Callaway JL; Szebenyi G; Baas PW; Kalil K
    J Neurosci; 1999 Oct; 19(20):8894-908. PubMed ID: 10516309
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neuronal growth cone collapse triggers lateral extensions along trailing axons.
    Davenport RW; Thies E; Cohen ML
    Nat Neurosci; 1999 Mar; 2(3):254-9. PubMed ID: 10195218
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Postnatal maturation of cerebellar mossy and climbing fibers: transient expression of dual features on single axons.
    Mason CA; Gregory E
    J Neurosci; 1984 Jul; 4(7):1715-35. PubMed ID: 6737039
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neocortical Chandelier Cells Developmentally Shape Axonal Arbors through Reorganization but Establish Subcellular Synapse Specificity without Refinement.
    Steinecke A; Hozhabri E; Tapanes S; Ishino Y; Zeng H; Kamasawa N; Taniguchi H
    eNeuro; 2017; 4(3):. PubMed ID: 28584877
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Growth and elongation within and along the axon.
    Lamoureux P; Heidemann SR; Martzke NR; Miller KE
    Dev Neurobiol; 2010 Feb; 70(3):135-49. PubMed ID: 19950193
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interplay between laminar specificity and activity-dependent mechanisms of thalamocortical axon branching.
    Uesaka N; Hayano Y; Yamada A; Yamamoto N
    J Neurosci; 2007 May; 27(19):5215-23. PubMed ID: 17494708
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The cytoskeletal and signaling mechanisms of axon collateral branching.
    Gallo G
    Dev Neurobiol; 2011 Mar; 71(3):201-20. PubMed ID: 21308993
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chick wing innervation. II. Morphology of motor and sensory axons and their growth cones during early development.
    Hollyday M; Morgan-Carr M
    J Comp Neurol; 1995 Jun; 357(2):254-71. PubMed ID: 7665728
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synapse-forming axons and recombinant agrin induce microprocess formation on myotubes.
    Uhm CS; Neuhuber B; Lowe B; Crocker V; Daniels MP
    J Neurosci; 2001 Dec; 21(24):9678-89. PubMed ID: 11739577
    [TBL] [Abstract][Full Text] [Related]  

  • 31. BDNF stabilizes synapses and maintains the structural complexity of optic axons in vivo.
    Hu B; Nikolakopoulou AM; Cohen-Cory S
    Development; 2005 Oct; 132(19):4285-98. PubMed ID: 16141221
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Demonstration of Cajal-Retzius cells and their processes in the neocortex of newborn mice using horseradish peroxidase].
    Derer P
    C R Acad Sci III; 1987; 304(2):61-6. PubMed ID: 3101993
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A molecular mechanism that regulates medially oriented axonal growth of upper layer neurons in the developing neocortex.
    Zhao H; Maruyama T; Hattori Y; Sugo N; Takamatsu H; Kumanogoh A; Shirasaki R; Yamamoto N
    J Comp Neurol; 2011 Apr; 519(5):834-48. PubMed ID: 21280039
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automated identification of axonal growth cones in time-lapse image sequences.
    Keenan TM; Hooker A; Spilker ME; Li N; Boggy GJ; Vicini P; Folch A
    J Neurosci Methods; 2006 Mar; 151(2):232-8. PubMed ID: 16174535
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Topographic-specific axon branching controlled by ephrin-As is the critical event in retinotectal map development.
    Yates PA; Roskies AL; McLaughlin T; O'Leary DD
    J Neurosci; 2001 Nov; 21(21):8548-63. PubMed ID: 11606643
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Netrin-1 and semaphorin 3A promote or inhibit cortical axon branching, respectively, by reorganization of the cytoskeleton.
    Dent EW; Barnes AM; Tang F; Kalil K
    J Neurosci; 2004 Mar; 24(12):3002-12. PubMed ID: 15044539
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Growth cone morphology varies with position in the developing mouse visual pathway from retina to first targets.
    Bovolenta P; Mason C
    J Neurosci; 1987 May; 7(5):1447-60. PubMed ID: 3572487
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Morphology of pioneer and follower growth cones in the developing cerebral cortex.
    Kim GJ; Shatz CJ; McConnell SK
    J Neurobiol; 1991 Sep; 22(6):629-42. PubMed ID: 1919567
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cell type-specific structural plasticity of axonal branches and boutons in the adult neocortex.
    De Paola V; Holtmaat A; Knott G; Song S; Wilbrecht L; Caroni P; Svoboda K
    Neuron; 2006 Mar; 49(6):861-75. PubMed ID: 16543134
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activity dependence of cortical axon branch formation: a morphological and electrophysiological study using organotypic slice cultures.
    Uesaka N; Hirai S; Maruyama T; Ruthazer ES; Yamamoto N
    J Neurosci; 2005 Jan; 25(1):1-9. PubMed ID: 15634761
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.