These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
412 related articles for article (PubMed ID: 16026825)
21. Design of a modular bioreactor to incorporate both perfusion flow and hydrostatic compression for tissue engineering applications. Orr DE; Burg KJ Ann Biomed Eng; 2008 Jul; 36(7):1228-41. PubMed ID: 18438713 [TBL] [Abstract][Full Text] [Related]
22. Tissue engineering of bone: effects of mechanical strain on osteoblastic cells in type I collagen matrices. Ignatius A; Blessing H; Liedert A; Schmidt C; Neidlinger-Wilke C; Kaspar D; Friemert B; Claes L Biomaterials; 2005 Jan; 26(3):311-8. PubMed ID: 15262473 [TBL] [Abstract][Full Text] [Related]
23. Cell distribution in a scaffold with random architectures under the influence of fluid dynamics. Shanglong Xu ; Pingan Du ; Youzhuan Xie ; Yang Yue J Biomater Appl; 2008 Nov; 23(3):229-45. PubMed ID: 18467746 [TBL] [Abstract][Full Text] [Related]
25. Microfluidic engineered high cell density three-dimensional neural cultures. Cullen DK; Vukasinovic J; Glezer A; Laplaca MC J Neural Eng; 2007 Jun; 4(2):159-72. PubMed ID: 17409489 [TBL] [Abstract][Full Text] [Related]
26. Hydrostatic pressure/perfusion culture system designed and validated for engineering tissue. Watanabe S; Inagaki S; Kinouchi I; Takai H; Masuda Y; Mizuno S J Biosci Bioeng; 2005 Jul; 100(1):105-11. PubMed ID: 16233859 [TBL] [Abstract][Full Text] [Related]
27. Mechanobiology of engineered cartilage cultured under a quantified fluid-dynamic environment. Raimondi MT; Boschetti F; Falcone L; Fiore GB; Remuzzi A; Marinoni E; Marazzi M; Pietrabissa R Biomech Model Mechanobiol; 2002 Jun; 1(1):69-82. PubMed ID: 14586708 [TBL] [Abstract][Full Text] [Related]
28. Dynamic cultivation of human mesenchymal stem cells in a rotating bed bioreactor system based on the Z RP platform. Diederichs S; Röker S; Marten D; Peterbauer A; Scheper T; van Griensven M; Kasper C Biotechnol Prog; 2009; 25(6):1762-71. PubMed ID: 19795480 [TBL] [Abstract][Full Text] [Related]
29. Effect of 3D scaffold and dynamic culture condition on the global gene expression profile of mouse embryonic stem cells. Liu H; Lin J; Roy K Biomaterials; 2006 Dec; 27(36):5978-89. PubMed ID: 16824594 [TBL] [Abstract][Full Text] [Related]
30. An organic-inorganic hybrid scaffold for the culture of HepG2 cells in a bioreactor. Kataoka K; Nagao Y; Nukui T; Akiyama I; Tsuru K; Hayakawa S; Osaka A; Huh NH Biomaterials; 2005 May; 26(15):2509-16. PubMed ID: 15585253 [TBL] [Abstract][Full Text] [Related]
31. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410 [TBL] [Abstract][Full Text] [Related]
32. Growth and differentiation of osteoblastic cells on 13-93 bioactive glass fibers and scaffolds. Brown RF; Day DE; Day TE; Jung S; Rahaman MN; Fu Q Acta Biomater; 2008 Mar; 4(2):387-96. PubMed ID: 17768097 [TBL] [Abstract][Full Text] [Related]
33. Increased rate of chondrocyte aggregation in a wavy-walled bioreactor. Bueno EM; Bilgen B; Carrier RL; Barabino GA Biotechnol Bioeng; 2004 Dec; 88(6):767-77. PubMed ID: 15515164 [TBL] [Abstract][Full Text] [Related]
34. A biaxial rotating bioreactor for the culture of fetal mesenchymal stem cells for bone tissue engineering. Zhang ZY; Teoh SH; Chong WS; Foo TT; Chng YC; Choolani M; Chan J Biomaterials; 2009 May; 30(14):2694-704. PubMed ID: 19223070 [TBL] [Abstract][Full Text] [Related]
35. Bone regeneration on computer-designed nano-fibrous scaffolds. Chen VJ; Smith LA; Ma PX Biomaterials; 2006 Jul; 27(21):3973-9. PubMed ID: 16564086 [TBL] [Abstract][Full Text] [Related]
36. Cellular response to zinc-containing organoapatite: an in vitro study of proliferation, alkaline phosphatase activity and biomineralization. Storrie H; Stupp SI Biomaterials; 2005 Sep; 26(27):5492-9. PubMed ID: 15860205 [TBL] [Abstract][Full Text] [Related]
37. Tissue-engineered bone formation using human bone marrow stromal cells and novel beta-tricalcium phosphate. Liu G; Zhao L; Cui L; Liu W; Cao Y Biomed Mater; 2007 Jun; 2(2):78-86. PubMed ID: 18458439 [TBL] [Abstract][Full Text] [Related]
38. Characterization of pulmonary cell growth parameters in a continuous perfusion microfluidic environment. Nalayanda DD; Puleo CM; Fulton WB; Wang TH; Abdullah F Exp Lung Res; 2007 Aug; 33(6):321-35. PubMed ID: 17694441 [TBL] [Abstract][Full Text] [Related]
39. Physiologic pulsatile flow bioreactor conditioning of poly(ethylene glycol)-based tissue engineered vascular grafts. Hahn MS; McHale MK; Wang E; Schmedlen RH; West JL Ann Biomed Eng; 2007 Feb; 35(2):190-200. PubMed ID: 17180465 [TBL] [Abstract][Full Text] [Related]
40. Design and validation of a dynamic flow perfusion bioreactor for use with compliant tissue engineering scaffolds. Jaasma MJ; Plunkett NA; O'Brien FJ J Biotechnol; 2008 Feb; 133(4):490-6. PubMed ID: 18221813 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]