BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 16027112)

  • 1. Origin and evolution of the archaeo-eukaryotic primase superfamily and related palm-domain proteins: structural insights and new members.
    Iyer LM; Koonin EV; Leipe DD; Aravind L
    Nucleic Acids Res; 2005; 33(12):3875-96. PubMed ID: 16027112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel Families of Archaeo-Eukaryotic Primases Associated with Mobile Genetic Elements of Bacteria and Archaea.
    Kazlauskas D; Sezonov G; Charpin N; Venclovas Č; Forterre P; Krupovic M
    J Mol Biol; 2018 Mar; 430(5):737-750. PubMed ID: 29198957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary genomics of nucleo-cytoplasmic large DNA viruses.
    Iyer LM; Balaji S; Koonin EV; Aravind L
    Virus Res; 2006 Apr; 117(1):156-84. PubMed ID: 16494962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Primase-polymerases are a functionally diverse superfamily of replication and repair enzymes.
    Guilliam TA; Keen BA; Brissett NC; Doherty AJ
    Nucleic Acids Res; 2015 Aug; 43(14):6651-64. PubMed ID: 26109351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging.
    Iyer LM; Makarova KS; Koonin EV; Aravind L
    Nucleic Acids Res; 2004; 32(17):5260-79. PubMed ID: 15466593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toprim--a conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins.
    Aravind L; Leipe DD; Koonin EV
    Nucleic Acids Res; 1998 Sep; 26(18):4205-13. PubMed ID: 9722641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The logic of DNA replication in double-stranded DNA viruses: insights from global analysis of viral genomes.
    Kazlauskas D; Krupovic M; Venclovas Č
    Nucleic Acids Res; 2016 Jun; 44(10):4551-64. PubMed ID: 27112572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases.
    Iyer LM; Koonin EV; Aravind L
    BMC Struct Biol; 2003 Jan; 3():1. PubMed ID: 12553882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of a bifunctional DNA primase-polymerase.
    Lipps G; Weinzierl AO; von Scheven G; Buchen C; Cramer P
    Nat Struct Mol Biol; 2004 Feb; 11(2):157-62. PubMed ID: 14730355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis.
    Makarova KS; Aravind L; Grishin NV; Rogozin IB; Koonin EV
    Nucleic Acids Res; 2002 Jan; 30(2):482-96. PubMed ID: 11788711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into eukaryotic primer synthesis from structures of the p48 subunit of human DNA primase.
    Vaithiyalingam S; Arnett DR; Aggarwal A; Eichman BF; Fanning E; Chazin WJ
    J Mol Biol; 2014 Feb; 426(3):558-69. PubMed ID: 24239947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system.
    Aravind L; Koonin EV
    Genome Res; 2001 Aug; 11(8):1365-74. PubMed ID: 11483577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances in understanding bacterial and archaeoeukaryotic primases.
    Bergsch J; Allain FH; Lipps G
    Curr Opin Struct Biol; 2019 Dec; 59():159-167. PubMed ID: 31585372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Common origin of four diverse families of large eukaryotic DNA viruses.
    Iyer LM; Aravind L; Koonin EV
    J Virol; 2001 Dec; 75(23):11720-34. PubMed ID: 11689653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A highly divergent archaeo-eukaryotic primase from the Thermococcus nautilus plasmid, pTN2.
    Gill S; Krupovic M; Desnoues N; Béguin P; Sezonov G; Forterre P
    Nucleic Acids Res; 2014 Apr; 42(6):3707-19. PubMed ID: 24445805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The bacterial replicative helicase DnaB evolved from a RecA duplication.
    Leipe DD; Aravind L; Grishin NV; Koonin EV
    Genome Res; 2000 Jan; 10(1):5-16. PubMed ID: 10645945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of the RNA polymerase domain of E. coli primase.
    Keck JL; Roche DD; Lynch AS; Berger JM
    Science; 2000 Mar; 287(5462):2482-6. PubMed ID: 10741967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and function of primase RepB' encoded by broad-host-range plasmid RSF1010 that replicates exclusively in leading-strand mode.
    Geibel S; Banchenko S; Engel M; Lanka E; Saenger W
    Proc Natl Acad Sci U S A; 2009 May; 106(19):7810-5. PubMed ID: 19416864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The promiscuous primase.
    Lao-Sirieix SH; Pellegrini L; Bell SD
    Trends Genet; 2005 Oct; 21(10):568-72. PubMed ID: 16095750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Prokaryotic primases - structure and function].
    Ziuzia-Graczyk I; Bębenek A
    Postepy Biochem; 2019 Mar; 65(1):21-30. PubMed ID: 30901180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.