These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 16027167)

  • 1. Cytoplasmic ATP-sensing domains regulate gating of skeletal muscle ClC-1 chloride channels.
    Bennetts B; Rychkov GY; Ng HL; Morton CJ; Stapleton D; Parker MW; Cromer BA
    J Biol Chem; 2005 Sep; 280(37):32452-8. PubMed ID: 16027167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of skeletal muscle ClC-1 chloride channels by low intracellular pH and ATP.
    Bennetts B; Parker MW; Cromer BA
    J Biol Chem; 2007 Nov; 282(45):32780-91. PubMed ID: 17693413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding of ATP to the CBS domains in the C-terminal region of CLC-1.
    Tseng PY; Yu WP; Liu HY; Zhang XD; Zou X; Chen TY
    J Gen Physiol; 2011 Apr; 137(4):357-68. PubMed ID: 21444658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unique gating properties of C. elegans ClC anion channel splice variants are determined by altered CBS domain conformation and the R-helix linker.
    Dave S; Sheehan JH; Meiler J; Strange K
    Channels (Austin); 2010; 4(4):289-301. PubMed ID: 20581474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular β-nicotinamide adenine dinucleotide inhibits the skeletal muscle ClC-1 chloride channel.
    Bennetts B; Yu Y; Chen TY; Parker MW
    J Biol Chem; 2012 Jul; 287(31):25808-20. PubMed ID: 22689570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gating of human ClC-2 chloride channels and regulation by carboxy-terminal domains.
    Garcia-Olivares J; Alekov A; Boroumand MR; Begemann B; Hidalgo P; Fahlke C
    J Physiol; 2008 Nov; 586(22):5325-36. PubMed ID: 18801843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of ClC-2 gating by intracellular ATP.
    Stölting G; Teodorescu G; Begemann B; Schubert J; Nabbout R; Toliat MR; Sander T; Nürnberg P; Lerche H; Fahlke C
    Pflugers Arch; 2013 Oct; 465(10):1423-37. PubMed ID: 23632988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional and structural conservation of CBS domains from CLC chloride channels.
    Estévez R; Pusch M; Ferrer-Costa C; Orozco M; Jentsch TJ
    J Physiol; 2004 Jun; 557(Pt 2):363-78. PubMed ID: 14724190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleotide recognition by the cytoplasmic domain of the human chloride transporter ClC-5.
    Meyer S; Savaresi S; Forster IC; Dutzler R
    Nat Struct Mol Biol; 2007 Jan; 14(1):60-7. PubMed ID: 17195847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Common gating of both CLC transporter subunits underlies voltage-dependent activation of the 2Cl-/1H+ exchanger ClC-7/Ostm1.
    Ludwig CF; Ullrich F; Leisle L; Stauber T; Jentsch TJ
    J Biol Chem; 2013 Oct; 288(40):28611-9. PubMed ID: 23983121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATP binding to the C terminus of the Arabidopsis thaliana nitrate/proton antiporter, AtCLCa, regulates nitrate transport into plant vacuoles.
    De Angeli A; Moran O; Wege S; Filleur S; Ephritikhine G; Thomine S; Barbier-Brygoo H; Gambale F
    J Biol Chem; 2009 Sep; 284(39):26526-32. PubMed ID: 19636075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of CBS and Bateman Domains in Phosphorylation-Dependent Regulation of a CLC Anion Channel.
    Yamada T; Krzeminski M; Bozoky Z; Forman-Kay JD; Strange K
    Biophys J; 2016 Nov; 111(9):1876-1886. PubMed ID: 27806269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The muscle chloride channel ClC-1 is not directly regulated by intracellular ATP.
    Zifarelli G; Pusch M
    J Gen Physiol; 2008 Feb; 131(2):109-16. PubMed ID: 18227271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleotides bind to the C-terminus of ClC-5.
    Wellhauser L; Kuo HH; Stratford FL; Ramjeesingh M; Huan LJ; Luong W; Li C; Deber CM; Bear CE
    Biochem J; 2006 Sep; 398(2):289-94. PubMed ID: 16686597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of a eukaryotic CLC transporter defines an intermediate state in the transport cycle.
    Feng L; Campbell EB; Hsiung Y; MacKinnon R
    Science; 2010 Oct; 330(6004):635-41. PubMed ID: 20929736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of gating in voltage-dependent ClC-2 chloride channel by point mutations affecting the pore and C-terminus CBS-2 domain.
    Yusef YR; Zúñiga L; Catalán M; Niemeyer MI; Cid LP; Sepúlveda FV
    J Physiol; 2006 Apr; 572(Pt 1):173-81. PubMed ID: 16469788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Putting the pieces together: a crystal clear window into CLC anion channel regulation.
    Strange K
    Channels (Austin); 2011; 5(2):101-5. PubMed ID: 21317557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of the human ClC-1 chloride channel.
    Wang K; Preisler SS; Zhang L; Cui Y; Missel JW; Grønberg C; Gotfryd K; Lindahl E; Andersson M; Calloe K; Egea PF; Klaerke DA; Pusch M; Pedersen PA; Zhou ZH; Gourdon P
    PLoS Biol; 2019 Apr; 17(4):e3000218. PubMed ID: 31022181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional complementation of truncated human skeletal-muscle chloride channel (hClC-1) using carboxyl tail fragments.
    Wu W; Rychkov GY; Hughes BP; Bretag AH
    Biochem J; 2006 Apr; 395(1):89-97. PubMed ID: 16321142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gating and trafficking of ClC-2 chloride channel without cystathionine beta-synthase domains.
    Arreola J; De Santiago-Castillo JA; Sánchez JE; Nieto PG
    J Physiol; 2008 Nov; 586(22):5289. PubMed ID: 19011132
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.