BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 16027167)

  • 21. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia.
    Dong Q; Ernst SE; Ostedgaard LS; Shah VS; Ver Heul AR; Welsh MJ; Randak CO
    J Biol Chem; 2015 May; 290(22):14140-53. PubMed ID: 25887396
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of physiological ClC-1 Cl- ion channel regulation for the excitability and function of working skeletal muscle.
    Pedersen TH; Riisager A; de Paoli FV; Chen TY; Nielsen OB
    J Gen Physiol; 2016 Apr; 147(4):291-308. PubMed ID: 27022190
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The structure of the cytoplasmic domain of the chloride channel ClC-Ka reveals a conserved interaction interface.
    Markovic S; Dutzler R
    Structure; 2007 Jun; 15(6):715-25. PubMed ID: 17562318
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulatory Conformational Coupling between CLC Anion Channel Membrane and Cytoplasmic Domains.
    Yamada T; Strange K
    Biophys J; 2016 Nov; 111(9):1887-1896. PubMed ID: 27806270
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A role for CBS domain 2 in trafficking of chloride channel CLC-5.
    Carr G; Simmons N; Sayer J
    Biochem Biophys Res Commun; 2003 Oct; 310(2):600-5. PubMed ID: 14521953
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Formation of CLC-0 chloride channels from separated transmembrane and cytoplasmic domains.
    Maduke M; Williams C; Miller C
    Biochemistry; 1998 Feb; 37(5):1315-21. PubMed ID: 9477958
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CLC chloride channels: correlating structure with function.
    Estévez R; Jentsch TJ
    Curr Opin Struct Biol; 2002 Aug; 12(4):531-9. PubMed ID: 12163078
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Helix O modulates voltage dependency of CLC-1.
    Seong JY; Ha K; Hong C; Myeong J; Lim HH; Yang D; So I
    Pflugers Arch; 2017 Feb; 469(2):183-193. PubMed ID: 27921211
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations.
    Scott JW; Hawley SA; Green KA; Anis M; Stewart G; Scullion GA; Norman DG; Hardie DG
    J Clin Invest; 2004 Jan; 113(2):274-84. PubMed ID: 14722619
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A structural perspective on ClC channel and transporter function.
    Dutzler R
    FEBS Lett; 2007 Jun; 581(15):2839-44. PubMed ID: 17452037
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular dissection of gating in the ClC-2 chloride channel.
    Jordt SE; Jentsch TJ
    EMBO J; 1997 Apr; 16(7):1582-92. PubMed ID: 9130703
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modulation of the slow/common gating of CLC channels by intracellular cadmium.
    Yu Y; Tsai MF; Yu WP; Chen TY
    J Gen Physiol; 2015 Dec; 146(6):495-508. PubMed ID: 26621774
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Large movement in the C terminus of CLC-0 chloride channel during slow gating.
    Bykova EA; Zhang XD; Chen TY; Zheng J
    Nat Struct Mol Biol; 2006 Dec; 13(12):1115-9. PubMed ID: 17115052
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of an N-terminal amino acid of the CLC-3 chloride channel critical in phosphorylation-dependent activation of a CaMKII-activated chloride current.
    Robinson NC; Huang P; Kaetzel MA; Lamb FS; Nelson DJ
    J Physiol; 2004 Apr; 556(Pt 2):353-68. PubMed ID: 14754994
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electro-steric opening of the CLC-2 chloride channel gate.
    De Jesús-Pérez JJ; Méndez-Maldonado GA; López-Romero AE; Esparza-Jasso D; González-Hernández IL; De la Rosa V; Gastélum-Garibaldi R; Sánchez-Rodríguez JE; Arreola J
    Sci Rep; 2021 Jun; 11(1):13127. PubMed ID: 34162897
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The cytoplasmic domain of the chloride channel ClC-0: structural and dynamic characterization of flexible regions.
    Alioth S; Meyer S; Dutzler R; Pervushin K
    J Mol Biol; 2007 Jun; 369(5):1163-9. PubMed ID: 17482645
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural basis for ion conduction and gating in ClC chloride channels.
    Dutzler R
    FEBS Lett; 2004 Apr; 564(3):229-33. PubMed ID: 15111101
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conservation of chloride channel structure revealed by an inhibitor binding site in ClC-1.
    Estévez R; Schroeder BC; Accardi A; Jentsch TJ; Pusch M
    Neuron; 2003 Apr; 38(1):47-59. PubMed ID: 12691663
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of a conserved lysine in chloride- and voltage-dependent ClC-0 fast gating.
    Engh AM; Faraldo-Gómez JD; Maduke M
    J Gen Physiol; 2007 Oct; 130(4):351-63. PubMed ID: 17846165
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relevance of the D13 region to the function of the skeletal muscle chloride channel, ClC-1.
    Hryciw DH; Rychkov GY; Hughes BP; Bretag AH
    J Biol Chem; 1998 Feb; 273(8):4304-7. PubMed ID: 9468477
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.