BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 16027365)

  • 21. Synaptic ribbon enables temporal precision of hair cell afferent synapse by increasing the number of readily releasable vesicles: a modeling study.
    Wittig JH; Parsons TD
    J Neurophysiol; 2008 Oct; 100(4):1724-39. PubMed ID: 18667546
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two Pools of Vesicles Associated with Synaptic Ribbons Are Molecularly Prepared for Release.
    Datta P; Gilliam J; Thoreson WB; Janz R; Heidelberger R
    Biophys J; 2017 Nov; 113(10):2281-2298. PubMed ID: 28863864
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adenosine triphosphate and the late steps in calcium-dependent exocytosis at a ribbon synapse.
    Heidelberger R
    J Gen Physiol; 1998 Feb; 111(2):225-41. PubMed ID: 9450941
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fast vesicle replenishment allows indefatigable signalling at the first auditory synapse.
    Griesinger CB; Richards CD; Ashmore JF
    Nature; 2005 May; 435(7039):212-5. PubMed ID: 15829919
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synaptic vesicle dynamics in the mossy fiber-CA3 presynaptic terminals of mouse hippocampus.
    Suyama S; Hikima T; Sakagami H; Ishizuka T; Yawo H
    Neurosci Res; 2007 Dec; 59(4):481-90. PubMed ID: 17933408
    [TBL] [Abstract][Full Text] [Related]  

  • 26. AP180 maintains the distribution of synaptic and vesicle proteins in the nerve terminal and indirectly regulates the efficacy of Ca2+-triggered exocytosis.
    Bao H; Daniels RW; MacLeod GT; Charlton MP; Atwood HL; Zhang B
    J Neurophysiol; 2005 Sep; 94(3):1888-903. PubMed ID: 15888532
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evidence that vesicles on the synaptic ribbon of retinal bipolar neurons can be rapidly released.
    von Gersdorff H; Vardi E; Matthews G; Sterling P
    Neuron; 1996 Jun; 16(6):1221-7. PubMed ID: 8663998
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transport, capture and exocytosis of single synaptic vesicles at active zones.
    Zenisek D; Steyer JA; Almers W
    Nature; 2000 Aug; 406(6798):849-54. PubMed ID: 10972279
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exocytosis, dependent on Ca2+ release from Ca2+ stores, is regulated by Ca2+ microdomains.
    Low JT; Shukla A; Behrendorff N; Thorn P
    J Cell Sci; 2010 Sep; 123(Pt 18):3201-8. PubMed ID: 20736314
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Temperature enhances exocytosis efficiency at the mouse inner hair cell ribbon synapse.
    Nouvian R
    J Physiol; 2007 Oct; 584(Pt 2):535-42. PubMed ID: 17717016
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intracellular Ca2+ microdomain-triggered exocytosis in neuroendocrine cells.
    Olivos Oré L; Artalejo AR
    Trends Neurosci; 2004 Mar; 27(3):113-5. PubMed ID: 15046078
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Global Ca2+ signaling drives ribbon-independent synaptic transmission at rod bipolar cell synapses.
    Mehta B; Ke JB; Zhang L; Baden AD; Markowitz AL; Nayak S; Briggman KL; Zenisek D; Singer JH
    J Neurosci; 2014 Apr; 34(18):6233-44. PubMed ID: 24790194
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence that fast exocytosis can be predominantly mediated by vesicles not docked at active zones in frog saccular hair cells.
    Edmonds BW; Gregory FD; Schweizer FE
    J Physiol; 2004 Oct; 560(Pt 2):439-50. PubMed ID: 15308677
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Increase in the pool size of releasable synaptic vesicles by the activation of protein kinase C in goldfish retinal bipolar cells.
    Berglund K; Midorikawa M; Tachibana M
    J Neurosci; 2002 Jun; 22(12):4776-85. PubMed ID: 12077174
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stimulated exocytosis of endosomes in goldfish retinal bipolar neurons.
    Coggins MR; Grabner CP; Almers W; Zenisek D
    J Physiol; 2007 Nov; 584(Pt 3):853-65. PubMed ID: 17823206
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Consequences of molecular-level Ca2+ channel and synaptic vesicle colocalization for the Ca2+ microdomain and neurotransmitter exocytosis: a monte carlo study.
    Shahrezaei V; Delaney KR
    Biophys J; 2004 Oct; 87(4):2352-64. PubMed ID: 15454435
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An Exclusion Zone for Ca2+ Channels around Docked Vesicles Explains Release Control by Multiple Channels at a CNS Synapse.
    Keller D; Babai N; Kochubey O; Han Y; Markram H; Schürmann F; Schneggenburger R
    PLoS Comput Biol; 2015 May; 11(5):e1004253. PubMed ID: 25951120
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Asynchronous transmitter release: control of exocytosis and endocytosis at the salamander rod synapse.
    Rieke F; Schwartz EA
    J Physiol; 1996 May; 493 ( Pt 1)(Pt 1):1-8. PubMed ID: 8735690
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Submillisecond kinetics of glutamate release from a sensory synapse.
    von Gersdorff H; Sakaba T; Berglund K; Tachibana M
    Neuron; 1998 Nov; 21(5):1177-88. PubMed ID: 9856472
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synaptic vesicle dynamics in mouse rod bipolar cells.
    Wan QF; Vila A; Zhou ZY; Heidelberger R
    Vis Neurosci; 2008; 25(4):523-33. PubMed ID: 18764958
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.