These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes. Spilker RL; de Almeida ES; Donzelli PS Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094 [TBL] [Abstract][Full Text] [Related]
5. Finite element biphasic indentation of cartilage: a comparison of experimental indenter and physiological contact geometries. Warner MD; Taylor WR; Clift SE Proc Inst Mech Eng H; 2001; 215(5):487-96. PubMed ID: 11726049 [TBL] [Abstract][Full Text] [Related]
6. Biphasic finite element modeling of hydrated soft tissue contact using an augmented Lagrangian method. Guo H; Spilker RL J Biomech Eng; 2011 Nov; 133(11):111001. PubMed ID: 22168733 [TBL] [Abstract][Full Text] [Related]
7. Effects of friction on the unconfined compressive response of articular cartilage: a finite element analysis. Spilker RL; Suh JK; Mow VC J Biomech Eng; 1990 May; 112(2):138-46. PubMed ID: 2345443 [TBL] [Abstract][Full Text] [Related]
8. A theoretical solution for the frictionless rolling contact of cylindrical biphasic articular cartilage layers. Ateshian GA; Wang H J Biomech; 1995 Nov; 28(11):1341-55. PubMed ID: 8522547 [TBL] [Abstract][Full Text] [Related]
9. Arthroscopic evaluation of cartilage degeneration using indentation testing--influence of indenter geometry. Li LP; Herzog W Clin Biomech (Bristol); 2006 May; 21(4):420-6. PubMed ID: 16457915 [TBL] [Abstract][Full Text] [Related]
10. A cross-validation of the biphasic poroviscoelastic model of articular cartilage in unconfined compression, indentation, and confined compression. DiSilvestro MR; Suh JK J Biomech; 2001 Apr; 34(4):519-25. PubMed ID: 11266676 [TBL] [Abstract][Full Text] [Related]
11. Hydrostatic pressurization and depletion of trapped lubricant pool during creep contact of a rippled indenter against a biphasic articular cartilage layer. Soltz MA; Basalo IM; Ateshian GA J Biomech Eng; 2003 Oct; 125(5):585-93. PubMed ID: 14618917 [TBL] [Abstract][Full Text] [Related]
12. The effect of highly inhomogeneous biphasic properties on mechanical behaviour of articular cartilage. Lin W; Meng Q; Li J; Chen Z; Jin Z Comput Methods Programs Biomed; 2021 Jul; 206():106122. PubMed ID: 33979755 [TBL] [Abstract][Full Text] [Related]
13. Determination of nonlinear fibre-reinforced biphasic poroviscoelastic constitutive parameters of articular cartilage using stress relaxation indentation testing and an optimizing finite element analysis. Seifzadeh A; Oguamanam DC; Trutiak N; Hurtig M; Papini M Comput Methods Programs Biomed; 2012 Aug; 107(2):315-26. PubMed ID: 21802762 [TBL] [Abstract][Full Text] [Related]
14. Optimization of the arthroscopic indentation instrument for the measurement of thin cartilage stiffness. Lyyra-Laitinen T; Niinimäki M; Töyräs J; Lindgren R; Kiviranta I; Jurvelin JS Phys Med Biol; 1999 Oct; 44(10):2511-24. PubMed ID: 10533925 [TBL] [Abstract][Full Text] [Related]
15. A mixed-penalty biphasic finite element formulation incorporating viscous fluids and material interfaces. Chan B; Donzelli PS; Spilker RL Ann Biomed Eng; 2000 Jun; 28(6):589-97. PubMed ID: 10983705 [TBL] [Abstract][Full Text] [Related]
16. A biphasic model for micro-indentation of a hydrogel-based contact lens. Chen X; Dunn AC; Sawyer WG; Sarntinoranont M J Biomech Eng; 2007 Apr; 129(2):156-63. PubMed ID: 17408320 [TBL] [Abstract][Full Text] [Related]
17. Multiphoton microscope measurement-based biphasic multiscale analyses of knee joint articular cartilage and chondrocyte by using visco-anisotropic hyperelastic finite element method and smoothed particle hydrodynamics method. Nakamachi E; Noma T; Nakahara K; Tomita Y; Morita Y Int J Numer Method Biomed Eng; 2017 Nov; 33(11):. PubMed ID: 28058781 [TBL] [Abstract][Full Text] [Related]
18. Robust and general method for determining surface fluid flow boundary conditions in articular cartilage contact mechanics modeling. Pawaskar SS; Fisher J; Jin Z J Biomech Eng; 2010 Mar; 132(3):031001. PubMed ID: 20459189 [TBL] [Abstract][Full Text] [Related]
19. An asymptotic solution for the contact of two biphasic cartilage layers. Ateshian GA; Lai WM; Zhu WB; Mow VC J Biomech; 1994 Nov; 27(11):1347-60. PubMed ID: 7798285 [TBL] [Abstract][Full Text] [Related]
20. A linearized formulation of triphasic mixture theory for articular cartilage, and its application to indentation analysis. Lu XL; Wan LQ; Guo XE; Mow VC J Biomech; 2010 Mar; 43(4):673-9. PubMed ID: 19896670 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]