BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 16027933)

  • 1. Surface-directed capillary system; theory, experiments and applications.
    Bouaidat S; Hansen O; Bruus H; Berendsen C; Bau-Madsen NK; Thomsen P; Wolff A; Jonsmann J
    Lab Chip; 2005 Aug; 5(8):827-36. PubMed ID: 16027933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micro patterning of cell and protein non-adhesive plasma polymerized coatings for biochip applications.
    Bouaidat S; Berendsen C; Thomsen P; Petersen SG; Wolff A; Jonsmann J
    Lab Chip; 2004 Dec; 4(6):632-7. PubMed ID: 15570377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A method for characterizing adsorption of flowing solutes to microfluidic device surfaces.
    Hawkins KR; Steedman MR; Baldwin RR; Fu E; Ghosal S; Yager P
    Lab Chip; 2007 Feb; 7(2):281-5. PubMed ID: 17268632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanointerstice-driven microflow.
    Chung S; Yun H; Kamm RD
    Small; 2009 Mar; 5(5):609-13. PubMed ID: 19226594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radial sample preconcentration.
    Scarff B; Escobedo C; Sinton D
    Lab Chip; 2011 Mar; 11(6):1102-9. PubMed ID: 21318202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative and qualitative evaluation of adsorption/desorption of bovine serum albumin on hydrophilic and hydrophobic surfaces.
    Jeyachandran YL; Mielczarski E; Rai B; Mielczarski JA
    Langmuir; 2009 Oct; 25(19):11614-20. PubMed ID: 19788219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A general method for patterning gradients of biomolecules on surfaces using microfluidic networks.
    Jiang X; Xu Q; Dertinger SK; Stroock AD; Fu TM; Whitesides GM
    Anal Chem; 2005 Apr; 77(8):2338-47. PubMed ID: 15828766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micropatterning of biomolecules on glass surfaces modified with various functional groups using photoactivatable biotin.
    Choi HJ; Kim NH; Chung BH; Seong GH
    Anal Biochem; 2005 Dec; 347(1):60-6. PubMed ID: 16242111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patterned cell culture inside microfluidic devices.
    Rhee SW; Taylor AM; Tu CH; Cribbs DH; Cotman CW; Jeon NL
    Lab Chip; 2005 Jan; 5(1):102-7. PubMed ID: 15616747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfiber-directed boundary flow in press-fit microdevices fabricated from self-adhesive hydrophobic surfaces.
    Huang TT; Taylor DG; Sedlak M; Mosier NS; Ladisch MR
    Anal Chem; 2005 Jun; 77(11):3671-5. PubMed ID: 15924403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of bovine serum albumin on polyelectrolyte-coated glass substrates: applications to colloidal lithography.
    Miao YH; Helseth LE
    Colloids Surf B Biointerfaces; 2008 Oct; 66(2):299-303. PubMed ID: 18706792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Super Stable Fluorescein Isothiocyanate Isomer I Monolayer for Total Internal Reflection Fluorescence Microscopy.
    Zarski P; Ryder AG
    Langmuir; 2018 Sep; 34(37):10913-10923. PubMed ID: 30145901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phospholipid morphologies on photochemically patterned silane monolayers.
    Howland MC; Sapuri-Butti AR; Dixit SS; Dattelbaum AM; Shreve AP; Parikh AN
    J Am Chem Soc; 2005 May; 127(18):6752-65. PubMed ID: 15869298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface modification method of microchannels for gas-liquid two-phase flow in microchips.
    Hibara A; Iwayama S; Matsuoka S; Ueno M; Kikutani Y; Tokeshi M; Kitamori T
    Anal Chem; 2005 Feb; 77(3):943-7. PubMed ID: 15679365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of bovine serum albumin using solid-phase extraction with in-situ polymerized stationary phase in a microfluidic device.
    Lee EZ; Huh YS; Jun YS; Won HJ; Hong YK; Park TJ; Lee SY; Hong WH
    J Chromatogr A; 2008 Apr; 1187(1-2):11-7. PubMed ID: 18325529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soft lithographic patterning of supported lipid bilayers onto a surface and inside microfluidic channels.
    Kim P; Lee SE; Jung HS; Lee HY; Kawai T; Suh KY
    Lab Chip; 2006 Jan; 6(1):54-9. PubMed ID: 16372069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid microfabrication of solvent-resistant biocompatible microfluidic devices.
    Hung LH; Lin R; Lee AP
    Lab Chip; 2008 Jun; 8(6):983-7. PubMed ID: 18497921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grafting epoxy-modified hydrophilic polymers onto poly(dimethylsiloxane) microfluidic chip to resist nonspecific protein adsorption.
    Wu D; Zhao B; Dai Z; Qin J; Lin B
    Lab Chip; 2006 Jul; 6(7):942-7. PubMed ID: 16804600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A water-activated pump for portable microfluidic applications.
    Good BT; Bowman CN; Davis RH
    J Colloid Interface Sci; 2007 Jan; 305(2):239-49. PubMed ID: 17081553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoliter capillary electrochromatography columns based on collocated monolithic support structures molded in poly(dimethyl siloxane).
    Slentz BE; Penner NA; Lugowska E; Regnier F
    Electrophoresis; 2001 Oct; 22(17):3736-43. PubMed ID: 11699912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.