These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 16028013)

  • 1. Localization and differential activity of P-glycoprotein in the bovine olfactory and nasal respiratory mucosae.
    Kandimalla KK; Donovan MD
    Pharm Res; 2005 Jul; 22(7):1121-8. PubMed ID: 16028013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of hydroxyzine and triprolidine across bovine olfactory mucosa: role of passive diffusion in the direct nose-to-brain uptake of small molecules.
    Kandimalla KK; Donovan MD
    Int J Pharm; 2005 Sep; 302(1-2):133-44. PubMed ID: 16105724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carrier mediated transport of chlorpheniramine and chlorcyclizine across bovine olfactory mucosa: implications on nose-to-brain transport.
    Kandimalla KK; Donovan MD
    J Pharm Sci; 2005 Mar; 94(3):613-24. PubMed ID: 15666293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of organic cation transporters in dopamine uptake across olfactory and nasal respiratory tissues.
    Chemuturi NV; Donovan MD
    Mol Pharm; 2007; 4(6):936-42. PubMed ID: 17892261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Permeation and metabolism of cocaine in the nasal mucosa.
    Zhang H; Prisinzano TE; Donovan MD
    Eur J Drug Metab Pharmacokinet; 2012 Dec; 37(4):255-62. PubMed ID: 22351075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport of deslorelin, an LHRH agonist, is vectorial and exhibits regional variation in excised bovine nasal tissue.
    Koushik KN; Kompella UB
    J Pharm Pharmacol; 2004 Jul; 56(7):861-8. PubMed ID: 15233864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of the putative pheromone and odorant transporter vomeromodulin mRNA and protein in nasal chemosensory mucosae.
    Krishna NS; Getchell ML; Getchell TV
    J Neurosci Res; 1994 Oct; 39(3):243-59. PubMed ID: 7869418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical quantitation and histochemical localization of carboxylesterase in the nasal passages of the Fischer-344 rat and B6C3F1 mouse.
    Bogdanffy MS; Randall HW; Morgan KT
    Toxicol Appl Pharmacol; 1987 Apr; 88(2):183-94. PubMed ID: 3564037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of L-type amino acid transporters in the uptake of glyphosate across mammalian epithelial tissues.
    Xu J; Li G; Wang Z; Si L; He S; Cai J; Huang J; Donovan MD
    Chemosphere; 2016 Feb; 145():487-94. PubMed ID: 26701683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of dopamine transporter (DAT) in dopamine transport across the nasal mucosa.
    Chemuturi NV; Haraldsson JE; Prisinzano T; Donovan M
    Life Sci; 2006 Aug; 79(14):1391-8. PubMed ID: 16733058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uptake and Transport of Ultrafine Nanoparticles (Quantum Dots) in the Nasal Mucosa.
    Bejgum BC; Donovan MD
    Mol Pharm; 2021 Jan; 18(1):429-440. PubMed ID: 33346666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Permeation and systemic absorption of R- and S-baclofen across the nasal mucosa.
    Zhang H; Schmidt M; Murry DJ; Donovan MD
    J Pharm Sci; 2011 Jul; 100(7):2717-23. PubMed ID: 21283988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regional expression of epithelial MDR1/P-glycoprotein in chronic rhinosinusitis with and without nasal polyposis.
    Bleier BS
    Int Forum Allergy Rhinol; 2012; 2(2):122-5. PubMed ID: 22223515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression and functional activity of P-glycoprotein in passaged primary human nasal epithelial cell monolayers cultured by the air-liquid interface method for nasal drug transport study.
    Cho HJ; Choi MK; Lin H; Kim JS; Chung SJ; Shim CK; Kim DD
    J Pharm Pharmacol; 2011 Mar; 63(3):385-91. PubMed ID: 21749386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of the Olfactory Epithelium and Nasal Glands in TMEM16A-/- and TMEM16A+/+ Mice.
    Maurya DK; Henriques T; Marini M; Pedemonte N; Galietta LJ; Rock JR; Harfe BD; Menini A
    PLoS One; 2015; 10(6):e0129171. PubMed ID: 26067252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative localization of carboxylesterase in F344 rat, beagle dog, and human nasal tissue.
    Lewis JL; Nikula KJ; Novak R; Dahl AR
    Anat Rec; 1994 May; 239(1):55-64. PubMed ID: 8037378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relative vascular permeability and vascularity across different regions of the rat nasal mucosa: implications for nasal physiology and drug delivery.
    Kumar NN; Gautam M; Lochhead JJ; Wolak DJ; Ithapu V; Singh V; Thorne RG
    Sci Rep; 2016 Aug; 6():31732. PubMed ID: 27558973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential expression of alpha, mu, and pi classes of glutathione S-transferases in chemosensory mucosae of rats during development.
    Krishna NS; Getchell TV; Getchell ML
    Cell Tissue Res; 1994 Mar; 275(3):435-50. PubMed ID: 8137395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pH-dependent functional activity of P-glycoprotein in limiting intestinal absorption of protic drugs: kinetic analysis of quinidine efflux in situ.
    Varma MV; Panchagnula R
    J Pharm Sci; 2005 Dec; 94(12):2632-43. PubMed ID: 16258992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of transient receptor potential vanilloid (TRPV) families 1, 2, 3 and 4 in the mouse olfactory epithelium.
    Khalifa Ahmed M; Takumida M; Ishibashi T; Hamamoto T; Hirakawa K
    Rhinology; 2009 Sep; 47(3):242-247. PubMed ID: 19839244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.