These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

885 related articles for article (PubMed ID: 16028034)

  • 1. Novel muscle patterns for reaching after cervical spinal cord injury: a case for motor redundancy.
    Koshland GF; Galloway JC; Farley B
    Exp Brain Res; 2005 Jul; 164(2):133-47. PubMed ID: 16028034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. General coordination of shoulder, elbow and wrist dynamics during multijoint arm movements.
    Galloway JC; Koshland GF
    Exp Brain Res; 2002 Jan; 142(2):163-80. PubMed ID: 11807572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of double-joint arm posture in adults with unilateral brain damage.
    Mihaltchev P; Archambault PS; Feldman AG; Levin MF
    Exp Brain Res; 2005 Jun; 163(4):468-86. PubMed ID: 15690154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shoulder and elbow joint power differ as a general feature of vertical arm movements.
    Galloway JC; Bhat A; Heathcock JC; Manal K
    Exp Brain Res; 2004 Aug; 157(3):391-6. PubMed ID: 15252703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of the wrist in three-joint arm movements to multiple directions in the horizontal plane.
    Koshland GF; Galloway JC; Nevoret-Bell CJ
    J Neurophysiol; 2000 May; 83(5):3188-95. PubMed ID: 10805717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directional tuning effects during cyclical two-joint arm movements in the horizontal plane.
    Levin O; Ouamer M; Steyvers M; Swinnen SP
    Exp Brain Res; 2001 Dec; 141(4):471-84. PubMed ID: 11810141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of gravity compensation on kinematics and muscle activation patterns during reach and retrieval in subjects with cervical spinal cord injury: an explorative study.
    Kloosterman MG; Snoek GJ; Kouwenhoven M; Nene AV; Jannink MJ
    J Rehabil Res Dev; 2010; 47(7):617-28. PubMed ID: 21110258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motoneuron loss associated with chronic locomotion impairments after spinal cord contusion in the rat.
    Collazos-Castro JE; Soto VM; Gutiérrez-Dávila M; Nieto-Sampedro M
    J Neurotrauma; 2005 May; 22(5):544-58. PubMed ID: 15892600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased antagonist muscle activity in cervical SCI patients suggests altered reciprocal inhibition during elbow contractions.
    Cremoux S; Amarantini D; Tallet J; Dal Maso F; Berton E
    Clin Neurophysiol; 2016 Jan; 127(1):629-634. PubMed ID: 25922129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upper extremity kinematics and kinetics during the performance of a stationary wheelie in manual wheelchair users with a spinal cord injury.
    Lalumiere M; Gagnon DH; Routhier F; Bouyer L; Desroches G
    J Appl Biomech; 2014 Aug; 30(4):574-80. PubMed ID: 24610281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Target-dependent differences between free and constrained arm movements in chronic hemiparesis.
    Beer RF; Dewald JP; Dawson ML; Rymer WZ
    Exp Brain Res; 2004 Jun; 156(4):458-70. PubMed ID: 14968276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of hand aperture during reaching in persons with incomplete cervical spinal cord injury.
    Stahl VA; Hayes HB; Buetefisch CM; Wolf SL; Trumbower RD
    Exp Brain Res; 2015 Mar; 233(3):871-84. PubMed ID: 25511164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control processes underlying elbow flexion movements may be independent of kinematic and electromyographic patterns: experimental study and modelling.
    St-Onge N; Adamovich SV; Feldman AG
    Neuroscience; 1997 Jul; 79(1):295-316. PubMed ID: 9178885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elbow extension using anterior deltoids and upper pectorals in spinal cord-injured subjects.
    Marciello MA; Herbison GJ; Cohen ME; Schmidt R
    Arch Phys Med Rehabil; 1995 May; 76(5):426-32. PubMed ID: 7741612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Persistence of inter-joint coupling during single-joint elbow flexions after shoulder fixation.
    Debicki DB; Gribble PL
    Exp Brain Res; 2005 May; 163(2):252-7. PubMed ID: 15754174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electromyographic and biomechanical characteristics of segmental postural adjustments associated with voluntary wrist movements. Influence of an elbow support.
    Chabran E; Maton B; Ribreau C; Fourment A
    Exp Brain Res; 2001 Nov; 141(2):133-45. PubMed ID: 11713625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EMG-based prediction of shoulder and elbow kinematics in able-bodied and spinal cord injured individuals.
    Au AT; Kirsch RF
    IEEE Trans Rehabil Eng; 2000 Dec; 8(4):471-80. PubMed ID: 11204038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compensation for interaction torques during single- and multijoint limb movement.
    Gribble PL; Ostry DJ
    J Neurophysiol; 1999 Nov; 82(5):2310-26. PubMed ID: 10561408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-latency responses during reaching account for the mechanical interaction between the shoulder and elbow joints.
    Kurtzer I; Pruszynski JA; Scott SH
    J Neurophysiol; 2009 Nov; 102(5):3004-15. PubMed ID: 19710379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electromyographic responses to a mechanical perturbation applied during impending arm movements in different directions: one-joint and two-joint conditions.
    Koshland GF; Hasan Z
    Exp Brain Res; 2000 Jun; 132(4):485-99. PubMed ID: 10912829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 45.