BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 16028107)

  • 1. The Mak2 MAP kinase signal transduction pathway is required for pathogenicity in Stagonospora nodorum.
    Solomon PS; Waters OD; Simmonds J; Cooper RM; Oliver RP
    Curr Genet; 2005 Jul; 48(1):60-8. PubMed ID: 16028107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The disruption of a Galpha subunit sheds new light on the pathogenicity of Stagonospora nodorum on wheat.
    Solomon PS; Tan KC; Sanchez P; Cooper RM; Oliver RP
    Mol Plant Microbe Interact; 2004 May; 17(5):456-66. PubMed ID: 15141949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional characterisation of glyoxalase I from the fungal wheat pathogen Stagonospora nodorum.
    Solomon PS; Oliver RP
    Curr Genet; 2004 Aug; 46(2):115-21. PubMed ID: 15205912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathogenicity of Stagonospora nodorum requires malate synthase.
    Solomon PS; Lee RC; Wilson TJ; Oliver RP
    Mol Microbiol; 2004 Aug; 53(4):1065-73. PubMed ID: 15306011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mannitol is required for asexual sporulation in the wheat pathogen Stagonospora nodorum (glume blotch).
    Solomon PS; Waters OD; Jörgens CI; Lowe RG; Rechberger J; Trengove RD; Oliver RP
    Biochem J; 2006 Oct; 399(2):231-9. PubMed ID: 16859492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stagonospora nodorum: from pathology to genomics and host resistance.
    Oliver RP; Friesen TL; Faris JD; Solomon PS
    Annu Rev Phytopathol; 2012; 50():23-43. PubMed ID: 22559071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trehalose biosynthesis is involved in sporulation of Stagonospora nodorum.
    Lowe RG; Lord M; Rybak K; Trengove RD; Oliver RP; Solomon PS
    Fungal Genet Biol; 2009 May; 46(5):381-9. PubMed ID: 19233304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic identification of extracellular proteins regulated by the Gna1 Galpha subunit in Stagonospora nodorum.
    Tan KC; Heazlewood JL; Millar AH; Oliver RP; Solomon PS
    Mycol Res; 2009 May; 113(5):523-31. PubMed ID: 19284980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The transcription factor StuA regulates central carbon metabolism, mycotoxin production, and effector gene expression in the wheat pathogen Stagonospora nodorum.
    IpCho SV; Tan KC; Koh G; Gummer J; Oliver RP; Trengove RD; Solomon PS
    Eukaryot Cell; 2010 Jul; 9(7):1100-8. PubMed ID: 20495056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissecting the role of histidine kinase and HOG1 mitogen-activated protein kinase signalling in stress tolerance and pathogenicity of Parastagonospora nodorum on wheat.
    John E; Lopez-Ruiz F; Rybak K; Mousley CJ; Oliver RP; Tan KC
    Microbiology (Reading); 2016 Jun; 162(6):1023-1036. PubMed ID: 26978567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the role of calcium/calmodulin-dependent protein kinases in Stagonospora nodorum.
    Solomon PS; Rybak K; Trengove RD; Oliver RP
    Mol Microbiol; 2006 Oct; 62(2):367-81. PubMed ID: 17020577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative analysis of the heterotrimeric G-protein Gα, Gβ and Gγ subunits in the wheat pathogen Stagonospora nodorum.
    Gummer JP; Trengove RD; Oliver RP; Solomon PS
    BMC Microbiol; 2012 Jul; 12():131. PubMed ID: 22759704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MgSlt2, a cellular integrity MAP kinase gene of the fungal wheat pathogen Mycosphaerella graminicola, is dispensable for penetration but essential for invasive growth.
    Mehrabi R; Van der Lee T; Waalwijk C; Gert HJ
    Mol Plant Microbe Interact; 2006 Apr; 19(4):389-98. PubMed ID: 16610742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A signaling-regulated, short-chain dehydrogenase of Stagonospora nodorum regulates asexual development.
    Tan KC; Heazlewood JL; Millar AH; Thomson G; Oliver RP; Solomon PS
    Eukaryot Cell; 2008 Nov; 7(11):1916-29. PubMed ID: 18776038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea.
    Xu JR; Hamer JE
    Genes Dev; 1996 Nov; 10(21):2696-706. PubMed ID: 8946911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Delta-aminolaevulinic acid synthesis is required for virulence of the wheat pathogen Stagonospora nodorum.
    Solomon PS; Jörgens CI; Oliver RP
    Microbiology (Reading); 2006 May; 152(Pt 5):1533-1538. PubMed ID: 16622070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Malayamycin, a new streptomycete antifungal compound, specifically inhibits sporulation of Stagonospora nodorum (Berk) Castell and Germano, the cause of wheat glume blotch disease.
    Li W; Csukai M; Corran A; Crowley P; Solomon PS; Oliver RP
    Pest Manag Sci; 2008 Dec; 64(12):1294-302. PubMed ID: 18683907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MAP kinase signalling pathway components and targets conserved between the distantly related plant pathogenic fungi Mycosphaerella graminicola and Magnaporthe grisea.
    Kramer B; Thines E; Foster AJ
    Fungal Genet Biol; 2009 Sep; 46(9):667-81. PubMed ID: 19520179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mitogen-activated protein kinase cascade regulating infection-related morphogenesis in Magnaporthe grisea.
    Zhao X; Kim Y; Park G; Xu JR
    Plant Cell; 2005 Apr; 17(4):1317-29. PubMed ID: 15749760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MgHog1 regulates dimorphism and pathogenicity in the fungal wheat pathogen Mycosphaerella graminicola.
    Mehrabi R; Zwiers LH; de Waard MA; Kema GH
    Mol Plant Microbe Interact; 2006 Nov; 19(11):1262-9. PubMed ID: 17073308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.