BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 16028595)

  • 1. Osteoblast growth promotion by protein electrostatic self-assembly on biodegradable poly(lactide).
    Zhu H; Ji J; Shen J
    J Biomater Sci Polym Ed; 2005; 16(6):761-74. PubMed ID: 16028595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein electrostatic self-assembly on poly(DL-lactide) scaffold to promote osteoblast growth.
    Zhu H; Ji J; Barbosa MA; Shen J
    J Biomed Mater Res B Appl Biomater; 2004 Oct; 71(1):159-65. PubMed ID: 15368240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomacromolecules electrostatic self-assembly on 3-dimensional tissue engineering scaffold.
    Zhu H; Ji J; Shen J
    Biomacromolecules; 2004; 5(5):1933-9. PubMed ID: 15360308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface engineering of poly(DL-lactide) via electrostatic self-assembly of extracellular matrix-like molecules.
    Zhu H; Ji J; Tan Q; Barbosa MA; Shen J
    Biomacromolecules; 2003; 4(2):378-86. PubMed ID: 12625735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of multilayer coating onto poly-(DL-lactide) to promote cytocompatibility.
    Zhu H; Ji J; Shen J
    Biomaterials; 2004 Jan; 25(1):109-17. PubMed ID: 14580914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface modification of poly(propylene carbonate) by aminolysis and layer-by-layer assembly for enhanced cytocompatibility.
    Zhong X; Lu Z; Valtchev P; Wei H; Zreiqat H; Dehghani F
    Colloids Surf B Biointerfaces; 2012 May; 93():75-84. PubMed ID: 22244300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polysaccharide-protein surface modification of titanium via a layer-by-layer technique: characterization and cell behaviour aspects.
    Cai K; Rechtenbach A; Hao J; Bossert J; Jandt KD
    Biomaterials; 2005 Oct; 26(30):5960-71. PubMed ID: 15913761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of selective attachment and growth of smooth muscle cells on gelatin- and fibronectin-coated micropatterns.
    Li M; Cui T; Mills DK; Lvov YM; McShane MJ
    J Nanosci Nanotechnol; 2005 Nov; 5(11):1809-15. PubMed ID: 16433414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deferoxamine immobilized poly(D,L-lactide) membrane via polydopamine adhesive coating: The influence on mouse embryo osteoblast precursor cells and human umbilical vein endothelial cells.
    Li H; Luo B; Wen W; Zhou C; Tian L; Ramakrishna S
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):701-709. PubMed ID: 27770944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface modification of titanium thin film with chitosan via electrostatic self-assembly technique and its influence on osteoblast growth behavior.
    Cai K; Hu Y; Jandt KD; Wang Y
    J Mater Sci Mater Med; 2008 Feb; 19(2):499-506. PubMed ID: 17619966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viability, adhesion, and bone phenotype of osteoblast-like cells on polyelectrolyte multilayer films.
    Tryoen-Tóth P; Vautier D; Haikel Y; Voegel JC; Schaaf P; Chluba J; Ogier J
    J Biomed Mater Res; 2002 Jun; 60(4):657-67. PubMed ID: 11948525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular response to gelatin- and fibronectin-coated multilayer polyelectrolyte nanofilms.
    Li M; Mills DK; Cui T; Mcshane MJ
    IEEE Trans Nanobioscience; 2005 Jun; 4(2):170-9. PubMed ID: 16117025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chitosan scaffold modified with D-(+) raffinose and enriched with thiol-modified gelatin for improved osteoblast adhesion.
    Galli C; Parisi L; Elviri L; Bianchera A; Smerieri A; Lagonegro P; Lumetti S; Manfredi E; Bettini R; Macaluso GM
    Biomed Mater; 2016 Feb; 11(1):015004. PubMed ID: 26836318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Porogen-induced surface modification of nano-fibrous poly(L-lactic acid) scaffolds for tissue engineering.
    Liu X; Won Y; Ma PX
    Biomaterials; 2006 Jul; 27(21):3980-7. PubMed ID: 16580063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multilayered DNA coatings: in vitro bioactivity studies and effects on osteoblast-like cell behavior.
    van den Beucken JJ; Walboomers XF; Leeuwenburgh SC; Vos MR; Sommerdijk NA; Nolte RJ; Jansen JA
    Acta Biomater; 2007 Jul; 3(4):587-96. PubMed ID: 17317349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophoretic Deposition of Bioadaptive Drug Delivery Coatings on Magnesium Alloy for Bone Repair.
    Qi H; Heise S; Zhou J; Schuhladen K; Yang Y; Cui N; Dong R; Virtanen S; Chen Q; Boccaccini AR; Lu T
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):8625-8634. PubMed ID: 30715842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RGD-conjugated copolymer incorporated into composite of poly(lactide-co-glycotide) and poly(L-lactide)-grafted nanohydroxyapatite for bone tissue engineering.
    Zhang P; Wu H; Wu H; Lù Z; Deng C; Hong Z; Jing X; Chen X
    Biomacromolecules; 2011 Jul; 12(7):2667-80. PubMed ID: 21604718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface tailoring of poly(DL-lactic acid) by ligand-tethered amphiphilic polymer for promoting chondrocyte attachment and growth.
    Ji J; Zhu H; Shen J
    Biomaterials; 2004 May; 25(10):1859-67. PubMed ID: 14738850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulating proliferation and differentiation of osteoblasts on poly(l-lactide)/gelatin composite nanofibers via timed biomineralization.
    Zhang C; Cao M; Lan J; Wei P; Cai Q; Yang X
    J Biomed Mater Res A; 2016 Aug; 104(8):1968-80. PubMed ID: 27027483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating the feasibility of utilizing the small molecule phenamil as a novel biofactor for bone regenerative engineering.
    Lo KW; Ulery BD; Kan HM; Ashe KM; Laurencin CT
    J Tissue Eng Regen Med; 2014 Sep; 8(9):728-36. PubMed ID: 22815259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.