BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 16028841)

  • 1. An immunohistochemical study of human fetal liver in the Meckel-Gruber syndrome.
    Loo CK; Freeman B; Killingsworth M; Wu XJ
    Pathology; 2005 Apr; 37(2):137-43. PubMed ID: 16028841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of apoptosis and apoptosis-related proteins to the malformation of the primitive intrahepatic biliary system in Meckel syndrome.
    Sergi C; Kahl P; Otto HF
    Am J Pathol; 2000 May; 156(5):1589-98. PubMed ID: 10793071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of the malformation of ductal plate of the liver in Meckel syndrome and review of other syndromes presenting with this anomaly.
    Sergi C; Adam S; Kahl P; Otto HF
    Pediatr Dev Pathol; 2000; 3(6):568-83. PubMed ID: 11000335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphological and immunohistochemical analysis of ductal plate malformation: correlation with fetal liver.
    Awasthi A; Das A; Srinivasan R; Joshi K
    Histopathology; 2004 Sep; 45(3):260-7. PubMed ID: 15330804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytokeratin subtypes in biliary atresia: immunohistochemical study.
    Sasaki H; Nio M; Iwami D; Funaki N; Ohi R; Sasano H
    Pathol Int; 2001 Jul; 51(7):511-8. PubMed ID: 11472563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Embryology of extra- and intrahepatic bile ducts, the ductal plate.
    Roskams T; Desmet V
    Anat Rec (Hoboken); 2008 Jun; 291(6):628-35. PubMed ID: 18484608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lack of cilia and differentiation defects in the liver of human foetuses with the Meckel syndrome.
    Clotman F; Libbrecht L; Killingsworth MC; Loo CC; Roskams T; Lemaigre FP
    Liver Int; 2008 Mar; 28(3):377-84. PubMed ID: 17976156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-CAM and keratins 7 and 20 in the ductal plate malformation of the Meckel-Gruber syndrome.
    Loo CK; Freeman B; Wu XJ
    Pathology; 2006 Aug; 38(4):374-6. PubMed ID: 16916736
    [No Abstract]   [Full Text] [Related]  

  • 9. Pathology of renal and hepatic anomalies in Meckel syndrome.
    Blankenberg TA; Ruebner BH; Ellis WG; Bernstein J; Dimmick JE
    Am J Med Genet Suppl; 1987; 3():395-410. PubMed ID: 3130875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of the intrahepatic biliary tree during human fetal development.
    Costa AM; Pegado CS; PĂ´rto LC
    Anat Rec; 1998 Jul; 251(3):297-302. PubMed ID: 9669756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hepatic artery malformations associated with a primary defect in intrahepatic bile duct development.
    Clotman F; Libbrecht L; Gresh L; Yaniv M; Roskams T; Rousseau GG; Lemaigre FP
    J Hepatol; 2003 Nov; 39(5):686-92. PubMed ID: 14568248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Divergent expression of midkine in the human fetal liver and kidney: immunohistochemical analysis of developmental changes in hilar primitive bile ducts and hepatocytes.
    Kato M; Shinozawa T; Kato S; Terada T
    Liver; 2000 Dec; 20(6):475-81. PubMed ID: 11169062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The correlation between portal myofibroblasts and development of intrahepatic bile ducts and arterial branches in human liver.
    Libbrecht L; Cassiman D; Desmet V; Roskams T
    Liver; 2002 Jun; 22(3):252-8. PubMed ID: 12100576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of human intrahepatic peribiliary glands. Histological, keratin immunohistochemical, and mucus histochemical analyses.
    Terada T; Nakanuma Y
    Lab Invest; 1993 Mar; 68(3):261-9. PubMed ID: 7680729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Profiles of expression of carbohydrate chain structures during human intrahepatic bile duct development and maturation: a lectin-histochemical and immunohistochemical study.
    Terada T; Nakanuma Y
    Hepatology; 1994 Aug; 20(2):388-97. PubMed ID: 8045500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunohistochemical detection of polyductin and co-localization with liver progenitor cell markers during normal and abnormal development of the intrahepatic biliary system and in adult hepatobiliary carcinomas.
    Dorn L; Menezes LF; Mikuz G; Otto HF; Onuchic LF; Sergi C
    J Cell Mol Med; 2009 Jul; 13(7):1279-90. PubMed ID: 19292732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of intrahepatic bile ducts in humans. Immunohistochemical study using monoclonal cytokeratin antibodies.
    Shah KD; Gerber MA
    Arch Pathol Lab Med; 1989 Oct; 113(10):1135-8. PubMed ID: 2478106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A classification of ductal plate malformations based on distinct pathogenic mechanisms of biliary dysmorphogenesis.
    Raynaud P; Tate J; Callens C; Cordi S; Vandersmissen P; Carpentier R; Sempoux C; Devuyst O; Pierreux CE; Courtoy P; Dahan K; Delbecque K; Lepreux S; Pontoglio M; Guay-Woodford LM; Lemaigre FP
    Hepatology; 2011 Jun; 53(6):1959-66. PubMed ID: 21391226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developing human biliary system in three dimensions.
    Vijayan V; Tan CE
    Anat Rec; 1997 Nov; 249(3):389-98. PubMed ID: 9372173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ductal plate in hepatoblasts in human fetal livers: I. ductal plate-like structures with cytokeratins 7 and 19 are occasionally seen within human fetal hepatoblasts.
    Terada T
    Int J Clin Exp Pathol; 2013; 6(5):889-96. PubMed ID: 23638220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.