These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 16028841)
1. An immunohistochemical study of human fetal liver in the Meckel-Gruber syndrome. Loo CK; Freeman B; Killingsworth M; Wu XJ Pathology; 2005 Apr; 37(2):137-43. PubMed ID: 16028841 [TBL] [Abstract][Full Text] [Related]
2. Contribution of apoptosis and apoptosis-related proteins to the malformation of the primitive intrahepatic biliary system in Meckel syndrome. Sergi C; Kahl P; Otto HF Am J Pathol; 2000 May; 156(5):1589-98. PubMed ID: 10793071 [TBL] [Abstract][Full Text] [Related]
3. Study of the malformation of ductal plate of the liver in Meckel syndrome and review of other syndromes presenting with this anomaly. Sergi C; Adam S; Kahl P; Otto HF Pediatr Dev Pathol; 2000; 3(6):568-83. PubMed ID: 11000335 [TBL] [Abstract][Full Text] [Related]
4. Morphological and immunohistochemical analysis of ductal plate malformation: correlation with fetal liver. Awasthi A; Das A; Srinivasan R; Joshi K Histopathology; 2004 Sep; 45(3):260-7. PubMed ID: 15330804 [TBL] [Abstract][Full Text] [Related]
5. Cytokeratin subtypes in biliary atresia: immunohistochemical study. Sasaki H; Nio M; Iwami D; Funaki N; Ohi R; Sasano H Pathol Int; 2001 Jul; 51(7):511-8. PubMed ID: 11472563 [TBL] [Abstract][Full Text] [Related]
6. Embryology of extra- and intrahepatic bile ducts, the ductal plate. Roskams T; Desmet V Anat Rec (Hoboken); 2008 Jun; 291(6):628-35. PubMed ID: 18484608 [TBL] [Abstract][Full Text] [Related]
7. Lack of cilia and differentiation defects in the liver of human foetuses with the Meckel syndrome. Clotman F; Libbrecht L; Killingsworth MC; Loo CC; Roskams T; Lemaigre FP Liver Int; 2008 Mar; 28(3):377-84. PubMed ID: 17976156 [TBL] [Abstract][Full Text] [Related]
8. N-CAM and keratins 7 and 20 in the ductal plate malformation of the Meckel-Gruber syndrome. Loo CK; Freeman B; Wu XJ Pathology; 2006 Aug; 38(4):374-6. PubMed ID: 16916736 [No Abstract] [Full Text] [Related]
9. Pathology of renal and hepatic anomalies in Meckel syndrome. Blankenberg TA; Ruebner BH; Ellis WG; Bernstein J; Dimmick JE Am J Med Genet Suppl; 1987; 3():395-410. PubMed ID: 3130875 [TBL] [Abstract][Full Text] [Related]
10. Quantification of the intrahepatic biliary tree during human fetal development. Costa AM; Pegado CS; PĂ´rto LC Anat Rec; 1998 Jul; 251(3):297-302. PubMed ID: 9669756 [TBL] [Abstract][Full Text] [Related]
11. Hepatic artery malformations associated with a primary defect in intrahepatic bile duct development. Clotman F; Libbrecht L; Gresh L; Yaniv M; Roskams T; Rousseau GG; Lemaigre FP J Hepatol; 2003 Nov; 39(5):686-92. PubMed ID: 14568248 [TBL] [Abstract][Full Text] [Related]
12. Divergent expression of midkine in the human fetal liver and kidney: immunohistochemical analysis of developmental changes in hilar primitive bile ducts and hepatocytes. Kato M; Shinozawa T; Kato S; Terada T Liver; 2000 Dec; 20(6):475-81. PubMed ID: 11169062 [TBL] [Abstract][Full Text] [Related]
13. The correlation between portal myofibroblasts and development of intrahepatic bile ducts and arterial branches in human liver. Libbrecht L; Cassiman D; Desmet V; Roskams T Liver; 2002 Jun; 22(3):252-8. PubMed ID: 12100576 [TBL] [Abstract][Full Text] [Related]
14. Development of human intrahepatic peribiliary glands. Histological, keratin immunohistochemical, and mucus histochemical analyses. Terada T; Nakanuma Y Lab Invest; 1993 Mar; 68(3):261-9. PubMed ID: 7680729 [TBL] [Abstract][Full Text] [Related]
15. Profiles of expression of carbohydrate chain structures during human intrahepatic bile duct development and maturation: a lectin-histochemical and immunohistochemical study. Terada T; Nakanuma Y Hepatology; 1994 Aug; 20(2):388-97. PubMed ID: 8045500 [TBL] [Abstract][Full Text] [Related]
16. Immunohistochemical detection of polyductin and co-localization with liver progenitor cell markers during normal and abnormal development of the intrahepatic biliary system and in adult hepatobiliary carcinomas. Dorn L; Menezes LF; Mikuz G; Otto HF; Onuchic LF; Sergi C J Cell Mol Med; 2009 Jul; 13(7):1279-90. PubMed ID: 19292732 [TBL] [Abstract][Full Text] [Related]
17. Development of intrahepatic bile ducts in humans. Immunohistochemical study using monoclonal cytokeratin antibodies. Shah KD; Gerber MA Arch Pathol Lab Med; 1989 Oct; 113(10):1135-8. PubMed ID: 2478106 [TBL] [Abstract][Full Text] [Related]
18. A classification of ductal plate malformations based on distinct pathogenic mechanisms of biliary dysmorphogenesis. Raynaud P; Tate J; Callens C; Cordi S; Vandersmissen P; Carpentier R; Sempoux C; Devuyst O; Pierreux CE; Courtoy P; Dahan K; Delbecque K; Lepreux S; Pontoglio M; Guay-Woodford LM; Lemaigre FP Hepatology; 2011 Jun; 53(6):1959-66. PubMed ID: 21391226 [TBL] [Abstract][Full Text] [Related]
19. Developing human biliary system in three dimensions. Vijayan V; Tan CE Anat Rec; 1997 Nov; 249(3):389-98. PubMed ID: 9372173 [TBL] [Abstract][Full Text] [Related]
20. Ductal plate in hepatoblasts in human fetal livers: I. ductal plate-like structures with cytokeratins 7 and 19 are occasionally seen within human fetal hepatoblasts. Terada T Int J Clin Exp Pathol; 2013; 6(5):889-96. PubMed ID: 23638220 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]