BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 16028893)

  • 1. Rotational motions of macro-molecules by single-molecule fluorescence microscopy.
    Rosenberg SA; Quinlan ME; Forkey JN; Goldman YE
    Acc Chem Res; 2005 Jul; 38(7):583-93. PubMed ID: 16028893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orientation and rotational motions of single molecules by polarized total internal reflection fluorescence microscopy (polTIRFM).
    Beausang JF; Sun Y; Quinlan ME; Forkey JN; Goldman YE
    Cold Spring Harb Protoc; 2012 May; 2012(5):. PubMed ID: 22550303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization.
    Forkey JN; Quinlan ME; Shaw MA; Corrie JE; Goldman YE
    Nature; 2003 Mar; 422(6930):399-404. PubMed ID: 12660775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subdiffraction-resolution fluorescence microscopy of myosin-actin motility.
    Endesfelder U; van de Linde S; Wolter S; Sauer M; Heilemann M
    Chemphyschem; 2010 Mar; 11(4):836-40. PubMed ID: 20186905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The polarized total internal reflection fluorescence microscopy (polTIRFM) twirling filament assay.
    Beausang JF; Sun Y; Quinlan ME; Forkey JN; Goldman YE
    Cold Spring Harb Protoc; 2012 Jun; 2012(6):719-21. PubMed ID: 22661429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of filamentous actin for polarized total internal reflection fluorescence microscopy (polTIRFM) motility assays.
    Beausang JF; Sun Y; Quinlan ME; Forkey JN; Goldman YE
    Cold Spring Harb Protoc; 2012 May; 2012(5):. PubMed ID: 22550306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy.
    Tokunaga M; Kitamura K; Saito K; Iwane AH; Yanagida T
    Biochem Biophys Res Commun; 1997 Jun; 235(1):47-53. PubMed ID: 9196033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The acquisition and analysis of polarized total internal reflection fluorescence microscopy (polTIRFM) data.
    Beausang JF; Sun Y; Quinlan ME; Forkey JN; Goldman YE
    Cold Spring Harb Protoc; 2012 Jun; 2012(6):722-5. PubMed ID: 22661430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution.
    Funatsu T; Harada Y; Tokunaga M; Saito K; Yanagida T
    Nature; 1995 Apr; 374(6522):555-9. PubMed ID: 7700383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The polarized total internal reflection fluorescence microscopy (polTIRFM) processive motility assay for myosin V.
    Beausang JF; Sun Y; Quinlan ME; Forkey JN; Goldman YE
    Cold Spring Harb Protoc; 2012 Jun; 2012(6):716-8. PubMed ID: 22661446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A brief introduction to single-molecule fluorescence methods.
    van den Wildenberg SM; Prevo B; Peterman EJ
    Methods Mol Biol; 2011; 783():81-99. PubMed ID: 21909884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rotational movement of formins evaluated by using single-molecule fluorescence polarization.
    Mizuno H; Watanabe N
    Methods Enzymol; 2014; 540():73-94. PubMed ID: 24630102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polarized fluorescence correlation spectroscopy of DNA-DAPI complexes.
    Barcellona ML; Gammon S; Hazlett T; Digman MA; Gratton E
    Microsc Res Tech; 2004 Nov; 65(4-5):205-17. PubMed ID: 15630690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of flow chambers for polarized total internal reflection fluorescence microscopy (polTIRFM) motility assays.
    Beausang JF; Sun Y; Quinlan ME; Forkey JN; Goldman YE
    Cold Spring Harb Protoc; 2012 Jun; 2012(6):712-5. PubMed ID: 22661445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myosin VI walks "wiggly" on actin with large and variable tilting.
    Sun Y; Schroeder HW; Beausang JF; Homma K; Ikebe M; Goldman YE
    Mol Cell; 2007 Dec; 28(6):954-64. PubMed ID: 18158894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural dynamics of the actin-myosin interface by site-directed spectroscopy.
    Korman VL; Anderson SE; Prochniewicz E; Titus MA; Thomas DD
    J Mol Biol; 2006 Mar; 356(5):1107-17. PubMed ID: 16406406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic polymorphism of single actin molecules in the actin filament.
    Kozuka J; Yokota H; Arai Y; Ishii Y; Yanagida T
    Nat Chem Biol; 2006 Feb; 2(2):83-6. PubMed ID: 16415860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rotations of a few cross-bridges in muscle by confocal total internal reflection microscopy.
    Borejdo J; Talent J; Akopova I; Burghardt TP
    Biochim Biophys Acta; 2006 Feb; 1763(2):137-40. PubMed ID: 16510199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Total internal reflection fluorescence (TIRF) microscopy.
    Trache A; Meininger GA
    Curr Protoc Microbiol; 2008 Aug; Chapter 2():Unit 2A.2.1-2A.2.22. PubMed ID: 18729056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on structural changes of F-actin and myosin in living, intact and damaged muscle fibres by means of polarized ultraviolet fluorescence microscopy.
    Borovikov YS
    Microsc Acta; 1980 Jan; 82(4):379-88. PubMed ID: 6892942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.