BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 16029178)

  • 1. Analysis of recharge-induced geochemical change in a contaminated aquifer.
    McGuire JT; Long DT; Hyndman DW
    Ground Water; 2005; 43(4):518-30. PubMed ID: 16029178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recharge processes drive sulfate reduction in an alluvial aquifer contaminated with landfill leachate.
    Scholl MA; Cozzarelli IM; Christenson SC
    J Contam Hydrol; 2006 Aug; 86(3-4):239-61. PubMed ID: 16677736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Occurrence and rates of terminal electron-accepting processes and recharge processes in petroleum hydrocarbon-contaminated subsurface.
    Salminen JM; Hänninen PJ; Leveinen J; Lintinen PT; Jørgensen KS
    J Environ Qual; 2006; 35(6):2273-82. PubMed ID: 17071898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradation potential of MTBE in a fractured chalk aquifer under aerobic conditions in long-term uncontaminated and contaminated aquifer microcosms.
    Shah NW; Thornton SF; Bottrell SH; Spence MJ
    J Contam Hydrol; 2009 Jan; 103(3-4):119-33. PubMed ID: 19008014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial and temporal changes in microbial community structure associated with recharge-influenced chemical gradients in a contaminated aquifer.
    Haack SK; Fogarty LR; West TG; Alm EW; McGuire JT; Long DT; Hyndman DW; Forney LJ
    Environ Microbiol; 2004 May; 6(5):438-48. PubMed ID: 15049917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural attenuation of chlorinated organics in a shallow sand aquifer.
    Nobre RC; Nobre MM
    J Hazard Mater; 2004 Jul; 110(1-3):129-37. PubMed ID: 15177734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of dominant biogeochemical processes in a contaminated aquifer-wetland system using multivariate statistical analysis.
    Báez-Cazull SE; McGuire JT; Cozzarelli IM; Voytek MA
    J Environ Qual; 2008; 37(1):30-46. PubMed ID: 18178876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multicomponent simulations of contrasting redox environments at an LNAPL site.
    Miles B; Peter A; Teutsch G
    Ground Water; 2008; 46(5):727-42. PubMed ID: 18459956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradation and mineral weathering controls on bulk electrical conductivity in a shallow hydrocarbon contaminated aquifer.
    Atekwana EA; Atekwana E; Legall FD; Krishnamurthy RV
    J Contam Hydrol; 2005 Nov; 80(3-4):149-67. PubMed ID: 16137787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fate of N-nitrosomorpholine in an anaerobic aquifer used for managed aquifer recharge: a column study.
    Pitoi MM; Patterson BM; Furness AJ; Bastow TP; McKinley AJ
    Water Res; 2011 Apr; 45(8):2550-60. PubMed ID: 21396674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methane oxidation in a crude oil contaminated aquifer: Delineation of aerobic reactions at the plume fringes.
    Amos RT; Bekins BA; Delin GN; Cozzarelli IM; Blowes DW; Kirshtein JD
    J Contam Hydrol; 2011 Jul; 125(1-4):13-25. PubMed ID: 21612840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attenuation reactions in a multiple contaminated aquifer in Bitterfeld (Germany).
    Heidrich S; Weiss H; Kaschl A
    Environ Pollut; 2004 May; 129(2):277-88. PubMed ID: 14987813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ground water recharge and flow characterization using multiple isotopes.
    Chowdhury AH; Uliana M; Wade S
    Ground Water; 2008; 46(3):426-36. PubMed ID: 18384592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fate of nine recycled water trace organic contaminants and metal(loid)s during managed aquifer recharge into a anaerobic aquifer: Column studies.
    Patterson BM; Shackleton M; Furness AJ; Pearce J; Descourvieres C; Linge KL; Busetti F; Spadek T
    Water Res; 2010 Mar; 44(5):1471-81. PubMed ID: 19939429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microcosm experiments to control anaerobic redox conditions when studying the fate of organic micropollutants in aquifer material.
    Barbieri M; Carrera J; Sanchez-Vila X; Ayora C; Cama J; Köck-Schulmeyer M; López de Alda M; Barceló D; Tobella Brunet J; Hernández García M
    J Contam Hydrol; 2011 Nov; 126(3-4):330-45. PubMed ID: 22115096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of electron acceptor utilization: implications for simulating anaerobic biodegradation.
    Schreiber ME; Carey GR; Feinstein DT; Bahr JM
    J Contam Hydrol; 2004 Sep; 73(1-4):99-127. PubMed ID: 15336791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Processes controlling the distribution and natural attenuation of dissolved phenolic compounds in a deep sandstone aquifer.
    Thornton SF; Quigley S; Spence MJ; Banwart SA; Bottrell S; Lerner DN
    J Contam Hydrol; 2001 Dec; 53(3-4):233-67. PubMed ID: 11820472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic factor analysis of groundwater quality trends in an agricultural area adjacent to Everglades National Park.
    Muñoz-Carpena R; Ritter A; Li YC
    J Contam Hydrol; 2005 Nov; 80(1-2):49-70. PubMed ID: 16102872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling of iron cycling and its impact on the electron balance at a petroleum hydrocarbon contaminated site in Hnevice, Czech Republic.
    Vencelides Z; Sracek O; Prommer H
    J Contam Hydrol; 2007 Jan; 89(3-4):270-94. PubMed ID: 17070964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biogeochemistry at a wetland sediment-alluvial aquifer interface in a landfill leachate plume.
    Lorah MM; Cozzarelli IM; Böhlke JK
    J Contam Hydrol; 2009 Apr; 105(3-4):99-117. PubMed ID: 19136178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.