These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 16029204)

  • 1. Hyperpolarization-activated (I) currents in auditory brainstem neurons of normal and congenitally deaf mice.
    Leao RN; Svahn K; Berntson A; Walmsley B
    Eur J Neurosci; 2005 Jul; 22(1):147-57. PubMed ID: 16029204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in glycinergic mIPSCs in the auditory brain stem of normal and congenitally deaf neonatal mice.
    Leao RN; Oleskevich S; Sun H; Bautista M; Fyffe RE; Walmsley B
    J Neurophysiol; 2004 Feb; 91(2):1006-12. PubMed ID: 14561690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maturation of auditory brainstem projections and calyces in the congenitally deaf (dn/dn) mouse.
    Youssoufian M; Couchman K; Shivdasani MN; Paolini AG; Walmsley B
    J Comp Neurol; 2008 Jan; 506(3):442-51. PubMed ID: 18041784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a robust central auditory synapse in congenital deafness.
    Youssoufian M; Oleskevich S; Walmsley B
    J Neurophysiol; 2005 Nov; 94(5):3168-80. PubMed ID: 16000524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synaptic transmission in the auditory brainstem of normal and congenitally deaf mice.
    Oleskevich S; Walmsley B
    J Physiol; 2002 Apr; 540(Pt 2):447-55. PubMed ID: 11956335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered sodium currents in auditory neurons of congenitally deaf mice.
    Leão RN; Naves MM; Leão KE; Walmsley B
    Eur J Neurosci; 2006 Aug; 24(4):1137-46. PubMed ID: 16930439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensory deprivation regulates the development of the hyperpolarization-activated current in auditory brainstem neurons.
    Hassfurth B; Magnusson AK; Grothe B; Koch U
    Eur J Neurosci; 2009 Oct; 30(7):1227-38. PubMed ID: 19788576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced low-voltage activated K+ conductances and enhanced central excitability in a congenitally deaf (dn/dn) mouse.
    Leao RN; Berntson A; Forsythe ID; Walmsley B
    J Physiol; 2004 Aug; 559(Pt 1):25-33. PubMed ID: 15235085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperpolarization-activated current (Ih) in the inferior colliculus: distribution and contribution to temporal processing.
    Koch U; Grothe B
    J Neurophysiol; 2003 Dec; 90(6):3679-87. PubMed ID: 12968010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperpolarization-activated currents are differentially expressed in mice brainstem auditory nuclei.
    Leao KE; Leao RN; Sun H; Fyffe RE; Walmsley B
    J Physiol; 2006 Nov; 576(Pt 3):849-64. PubMed ID: 16916913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel role for MNTB neuron dendrites in regulating action potential amplitude and cell excitability during repetitive firing.
    Leão RN; Leão RM; da Costa LF; Rock Levinson S; Walmsley B
    Eur J Neurosci; 2008 Jun; 27(12):3095-108. PubMed ID: 18598256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early development of intrinsic and synaptic properties of chicken nucleus laminaris neurons.
    Gao H; Lu Y
    Neuroscience; 2008 Apr; 153(1):131-43. PubMed ID: 18355968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical membrane properties of trapezoid body neurons in the rat auditory brain stem are preserved in organotypic slice cultures.
    Löhrke S; Kungel M; Friauf E
    J Neurobiol; 1998 Sep; 36(3):395-409. PubMed ID: 9733074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic variation of potassium current amplitudes across the tonotopic axis of the rat medial nucleus of the trapezoid body.
    Brew HM; Forsythe ID
    Hear Res; 2005 Aug; 206(1-2):116-32. PubMed ID: 16081003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of spontaneous activity in development of the endbulb of Held synapse.
    McKay SM; Oleskevich S
    Hear Res; 2007 Aug; 230(1-2):53-63. PubMed ID: 17590547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane and synaptic properties of nucleus tractus solitarius neurons projecting to the caudal ventrolateral medulla.
    Li DP; Yang Q
    Auton Neurosci; 2007 Oct; 136(1-2):69-81. PubMed ID: 17537680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a potassium-based leak conductance in the medial nucleus of the trapezoid body.
    Berntson AK; Walmsley B
    Hear Res; 2008 Oct; 244(1-2):98-106. PubMed ID: 18761066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptic inputs to granule cells of the dorsal cochlear nucleus.
    Balakrishnan V; Trussell LO
    J Neurophysiol; 2008 Jan; 99(1):208-19. PubMed ID: 17959739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interlaminar differences of intrinsic properties of pyramidal neurons in the auditory cortex of mice.
    Huggenberger S; Vater M; Deisz RA
    Cereb Cortex; 2009 May; 19(5):1008-18. PubMed ID: 18775844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SK Channels Regulate Resting Properties and Signaling Reliability of a Developing Fast-Spiking Neuron.
    Zhang Y; Huang H
    J Neurosci; 2017 Nov; 37(44):10738-10747. PubMed ID: 28982705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.