These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 16029855)
1. Remote Raman and fluorescence studies of mineral samples. Bozlee BJ; Misra AK; Sharma SK; Ingram M Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2342-8. PubMed ID: 16029855 [TBL] [Abstract][Full Text] [Related]
2. Remote Raman spectroscopic detection of minerals and organics under illuminated conditions from a distance of 10 m using a single 532 nm laser pulse. Misra AK; Sharma SK; Lucey PG Appl Spectrosc; 2006 Feb; 60(2):223-8. PubMed ID: 16542575 [TBL] [Abstract][Full Text] [Related]
3. Combined remote LIBS and Raman spectroscopy at 8.6m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust. Sharma SK; Misra AK; Lucey PG; Wiens RC; Clegg SM Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1036-45. PubMed ID: 17723318 [TBL] [Abstract][Full Text] [Related]
4. A combined remote Raman and LIBS instrument for characterizing minerals with 532 nm laser excitation. Sharma SK; Misra AK; Lucey PG; Lentz RC Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):468-76. PubMed ID: 19084470 [TBL] [Abstract][Full Text] [Related]
5. Pulsed remote Raman system for daytime measurements of mineral spectra. Misra AK; Sharma SK; Chio CH; Lucey PG; Lienert B Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2281-7. PubMed ID: 16029850 [TBL] [Abstract][Full Text] [Related]
6. New trends in telescopic remote Raman spectroscopic instrumentation. Sharma SK Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1008-22. PubMed ID: 17723317 [TBL] [Abstract][Full Text] [Related]
7. Laser induced fluorescence bands in the FT-Raman spectra of bioceramics. Aminzadeh A; Meskinfam M; Tayyary SF Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jan; 66(1):199-201. PubMed ID: 16829177 [TBL] [Abstract][Full Text] [Related]
8. Fluorescence rejection in resonance Raman spectroscopy using a picosecond-gated intensified charge-coupled device camera. Efremov EV; Buijs JB; Gooijer C; Ariese F Appl Spectrosc; 2007 Jun; 61(6):571-8. PubMed ID: 17650366 [TBL] [Abstract][Full Text] [Related]
9. Raman spectroscopic identification of usnic acid in hydrothermal minerals as a potential Martian analogue. Osterrothová K; Jehlicka J Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):576-80. PubMed ID: 18980859 [TBL] [Abstract][Full Text] [Related]
10. Raman and infrared spectroscopic study of the anhydrous carbonate minerals shortite and barytocalcite. Frost RL; Dickfos MJ Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(1):143-6. PubMed ID: 18222105 [TBL] [Abstract][Full Text] [Related]
11. Maturation grade of coals as revealed by Raman spectroscopy: progress and problems. Quirico E; Rouzaud JN; Bonal L; Montagnac G Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2368-77. PubMed ID: 16029859 [TBL] [Abstract][Full Text] [Related]
12. Analysis of natural and artificial ultramarine blue pigments using laser induced breakdown and pulsed Raman spectroscopy, statistical analysis and light microscopy. Osticioli I; Mendes NF; Nevin A; Gil FP; Becucci M; Castellucci E Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):525-31. PubMed ID: 19129003 [TBL] [Abstract][Full Text] [Related]
13. Remote pulsed Raman spectroscopy of inorganic and organic materials to a radial distance of 100 meters. Sharma SK; Misra AK; Lucey PG; Angel SM; McKay CP Appl Spectrosc; 2006 Aug; 60(8):871-6. PubMed ID: 16925922 [TBL] [Abstract][Full Text] [Related]
14. Tooth caries detection by curve fitting of laser-induced fluorescence emission: a comparative evaluation with reflectance spectroscopy. Subhash N; Thomas SS; Mallia RJ; Jose M Lasers Surg Med; 2005 Oct; 37(4):320-8. PubMed ID: 16180220 [TBL] [Abstract][Full Text] [Related]
15. Contribution of chlorophyll fluorescence to the apparent vegetation reflectance. Campbell PK; Middleton EM; Corp LA; Kim MS Sci Total Environ; 2008 Oct; 404(2-3):433-9. PubMed ID: 18164750 [TBL] [Abstract][Full Text] [Related]
16. A micro-Raman spectroscopic study of hydrazine-treated human dental calculus. Tsuda H; Jongebloed WL; Stokroos I; Arends J Scanning Microsc; 1996; 10(4):1015-23; discussion 1023-4. PubMed ID: 9854853 [TBL] [Abstract][Full Text] [Related]
17. Raman efficiencies of natural rocks and minerals: performance of a remote Raman system for planetary exploration at a distance of 10 meters. Stopar JD; Lucey PG; Sharma SK; Misra AK; Taylor GJ; Hubble HW Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2315-23. PubMed ID: 16029852 [TBL] [Abstract][Full Text] [Related]
18. UV Raman spectroscopy--a technique for biological and mineralogical in situ planetary studies. Tarcea N; Harz M; Rösch P; Frosch T; Schmitt M; Thiele H; Hochleitner R; Popp J Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1029-35. PubMed ID: 17890146 [TBL] [Abstract][Full Text] [Related]
19. Remote-Raman spectroscopic study of minerals under supercritical CO2 relevant to Venus exploration. Sharma SK; Misra AK; Clegg SM; Barefield JE; Wiens RC; Acosta TE; Bates DE Spectrochim Acta A Mol Biomol Spectrosc; 2011 Oct; 80(1):75-81. PubMed ID: 21333587 [TBL] [Abstract][Full Text] [Related]
20. Laser-induced fluorescence ratios of Cajanus cajan L. under the stress of cadmium and its correlation with pigment content and pigment ratios. Maurya R; Gopal R Appl Spectrosc; 2008 Apr; 62(4):433-8. PubMed ID: 18416903 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]