These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 16030022)

  • 21. Barley malt-alpha-amylase. Purification, action pattern, and subsite mapping of isozyme 1 and two members of the isozyme 2 subfamily using p-nitrophenylated maltooligosaccharide substrates.
    Ajandouz EH; Abe J; Svensson B; Marchis-Mouren G
    Biochim Biophys Acta; 1992 Sep; 1159(2):193-202. PubMed ID: 1390923
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Probing the role of a mobile loop in substrate binding and enzyme activity of human salivary amylase.
    Ramasubbu N; Ragunath C; Mishra PJ
    J Mol Biol; 2003 Jan; 325(5):1061-76. PubMed ID: 12527308
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Site-directed mutagenesis of histidine 93, aspartic acid 180, glutamic acid 205, histidine 290, and aspartic acid 291 at the active site and tryptophan 279 at the raw starch binding site in barley alpha-amylase 1.
    Søgaard M; Kadziola A; Haser R; Svensson B
    J Biol Chem; 1993 Oct; 268(30):22480-4. PubMed ID: 7901200
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crystal structure of the polyextremophilic alpha-amylase AmyB from Halothermothrix orenii: details of a productive enzyme-substrate complex and an N domain with a role in binding raw starch.
    Tan TC; Mijts BN; Swaminathan K; Patel BK; Divne C
    J Mol Biol; 2008 May; 378(4):852-70. PubMed ID: 18387632
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Amylose chain behavior in an interacting context. III. Complete occupancy of the AMY2 barley alpha-amylase cleft and comparison with biochemical data.
    André G; Buléon A; Haser R; Tran V
    Biopolymers; 1999 Dec; 50(7):751-62. PubMed ID: 10547530
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Degradation of the starch components amylopectin and amylose by barley α-amylase 1: role of surface binding site 2.
    Nielsen JW; Kramhøft B; Bozonnet S; Abou Hachem M; Stipp SL; Svensson B; Willemoës M
    Arch Biochem Biophys; 2012 Dec; 528(1):1-6. PubMed ID: 22902860
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structures of maltohexaose and maltoheptaose bound at the donor sites of cyclodextrin glycosyltransferase give insight into the mechanisms of transglycosylation activity and cyclodextrin size specificity.
    Uitdehaag JC; van Alebeek GJ; van Der Veen BA; Dijkhuizen L; Dijkstra BW
    Biochemistry; 2000 Jul; 39(26):7772-80. PubMed ID: 10869182
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mapping of barley alpha-amylases and outer subsite mutants reveals dynamic high-affinity subsites and barriers in the long substrate binding cleft.
    Kandra L; Hachem MA; Gyémánt G; Kramhøft B; Svensson B
    FEBS Lett; 2006 Sep; 580(21):5049-53. PubMed ID: 16949579
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Putative implication of alpha-amylase loop 7 in the mechanism of substrate binding and reaction products release.
    André G; Tran V
    Biopolymers; 2004 Oct; 75(2):95-108. PubMed ID: 15356864
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acarbose rearrangement mechanism implied by the kinetic and structural analysis of human pancreatic alpha-amylase in complex with analogues and their elongated counterparts.
    Li C; Begum A; Numao S; Park KH; Withers SG; Brayer GD
    Biochemistry; 2005 Mar; 44(9):3347-57. PubMed ID: 15736945
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isozyme hybrids within the protruding third loop domain of the barley alpha-amylase (beta/alpha)8-barrel. Implication for BASI sensitivity and substrate affinity.
    Juge N; Rodenburg KW; Guo XJ; Chaix JC; Svensson B
    FEBS Lett; 1995 Apr; 363(3):299-303. PubMed ID: 7737421
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystallographic evidence of a transglycosylation reaction: ternary complexes of a psychrophilic alpha-amylase.
    Aghajari N; Roth M; Haser R
    Biochemistry; 2002 Apr; 41(13):4273-80. PubMed ID: 11914073
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of essential carbohydrate/aromatic stacking interaction with Tyr100 and Phe259 on substrate binding of cyclodextrin glycosyltransferase from alkalophilic Bacillus sp. 1011.
    Haga K; Kanai R; Sakamoto O; Aoyagi M; Harata K; Yamane K
    J Biochem; 2003 Dec; 134(6):881-91. PubMed ID: 14769878
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Substrate mimicry in the active center of a mammalian alpha-amylase: structural analysis of an enzyme-inhibitor complex.
    Bompard-Gilles C; Rousseau P; Rougé P; Payan F
    Structure; 1996 Dec; 4(12):1441-52. PubMed ID: 8994970
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mutational analysis of target enzyme recognition of the beta-trefoil fold barley alpha-amylase/subtilisin inhibitor.
    Bønsager BC; Nielsen PK; Abou Hachem M; Fukuda K; Praetorius-Ibba M; Svensson B
    J Biol Chem; 2005 Apr; 280(15):14855-64. PubMed ID: 15657043
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crystal structure of Bacillus subtilis alpha-amylase in complex with acarbose.
    Kagawa M; Fujimoto Z; Momma M; Takase K; Mizuno H
    J Bacteriol; 2003 Dec; 185(23):6981-4. PubMed ID: 14617662
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The active center of a mammalian alpha-amylase. Structure of the complex of a pancreatic alpha-amylase with a carbohydrate inhibitor refined to 2.2-A resolution.
    Qian M; Haser R; Buisson G; Duée E; Payan F
    Biochemistry; 1994 May; 33(20):6284-94. PubMed ID: 8193143
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural analysis of a chimeric bacterial alpha-amylase. High-resolution analysis of native and ligand complexes.
    Brzozowski AM; Lawson DM; Turkenburg JP; Bisgaard-Frantzen H; Svendsen A; Borchert TV; Dauter Z; Wilson KS; Davies GJ
    Biochemistry; 2000 Aug; 39(31):9099-107. PubMed ID: 10924103
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crystal structure of a maltooligosaccharide-forming amylase from Bacillus stearothermophilus STB04.
    Xie X; Li Y; Ban X; Zhang Z; Gu Z; Li C; Hong Y; Cheng L; Jin T; Li Z
    Int J Biol Macromol; 2019 Oct; 138():394-402. PubMed ID: 31325505
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural insight into substrate specificity of human intestinal maltase-glucoamylase.
    Ren L; Qin X; Cao X; Wang L; Bai F; Bai G; Shen Y
    Protein Cell; 2011 Oct; 2(10):827-36. PubMed ID: 22058037
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.