These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 16030059)

  • 1. Forbush decrease effects on radiation dose received on-board aeroplanes.
    Lantos P
    Radiat Prot Dosimetry; 2005; 117(4):357-64. PubMed ID: 16030059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methods for estimating radiation doses received by commercial aircrew.
    Lantos P; Fuller N; Bottollier-Depois JF
    Aviat Space Environ Med; 2003 Jul; 74(7):746-52. PubMed ID: 12862329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling of aircrew radiation exposure from galactic cosmic rays and solar particle events.
    Takada M; Lewis BJ; Boudreau M; Al Anid H; Bennett LG
    Radiat Prot Dosimetry; 2007; 124(4):289-318. PubMed ID: 17578874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo calculation of the angular distribution of cosmic rays at flight altitudes.
    Battistoni G; Ferrari A; Pelliccioni M; Villari R
    Radiat Prot Dosimetry; 2004; 112(3):331-43. PubMed ID: 15546896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling of radiation exposure at high altitudes during solar storms.
    Al Anid H; Lewis BJ; Bennett LG; Takada M
    Radiat Prot Dosimetry; 2009 Oct; 136(4):311-6. PubMed ID: 19608577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of codes assessing galactic cosmic radiation exposure of aircraft crew.
    Bottollier-Depois JF; Beck P; Bennett B; Bennett L; Bütikofer R; Clairand I; Desorgher L; Dyer C; Felsberger E; Flückiger E; Hands A; Kindl P; Latocha M; Lewis B; Leuthold G; Maczka T; Mares V; McCall MJ; O'Brien K; Rollet S; Rühm W; Wissmann F
    Radiat Prot Dosimetry; 2009 Oct; 136(4):317-23. PubMed ID: 19703832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the influence of aircraft shielding on the aircrew exposure through an aircraft mathematical model.
    Ferrari A; Pelliccioni M; Villari R
    Radiat Prot Dosimetry; 2004; 108(2):91-105. PubMed ID: 14978289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte-Carlo calculations of particle fluences and neutron effective dose rates in the atmosphere.
    Matthiä D; Sihver L; Meier M
    Radiat Prot Dosimetry; 2008; 131(2):222-8. PubMed ID: 18448435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-flight dose estimates for aircraft crew and pregnant female crew members in military transport missions.
    Alves JG; Mairos JC
    Radiat Prot Dosimetry; 2007; 125(1-4):433-7. PubMed ID: 17277329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Estimated cosmic radiation doses for flight personnel].
    Feng YJ; Chen WR; Sun TP; Duan SY; Jia BS; Zhang HL
    Space Med Med Eng (Beijing); 2002 Aug; 15(4):265-9. PubMed ID: 12422870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cosmic radiation dose in aircraft--a neutron track etch detector.
    Vuković B; Radolić V; Miklavcić I; Poje M; Varga M; Planinić J
    J Environ Radioact; 2007; 98(3):264-73. PubMed ID: 17600597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The extreme solar cosmic ray particle event on 20 January 2005 and its influence on the radiation dose rate at aircraft altitude.
    Bütikofer R; Flückiger EO; Desorgher L; Moser MR
    Sci Total Environ; 2008 Mar; 391(2-3):177-83. PubMed ID: 18031791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An operational approach for aircraft crew dosimetry: the SIEVERT system.
    Bottollier-Depois JF; Blanchard P; Clairand I; Dessarps P; Fuller N; Lantos P; Saint-Lô D; Trompier F
    Radiat Prot Dosimetry; 2007; 125(1-4):421-4. PubMed ID: 17711868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation on contribution of neutron monitor data to estimation of aviation doses.
    Kákona M; Ploc O; Kyselová D; Kubančák J; Langer R; Kudela K
    Life Sci Space Res (Amst); 2016 Nov; 11():24-28. PubMed ID: 27993190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Space life sciences: structure and dynamics of the global space radiation field at aircraft altitudes.
    Adv Space Res; 2003; 32(1):1-115. PubMed ID: 14727656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurements and simulations of the radiation exposure to aircraft crew workplaces due to cosmic radiation in the atmosphere.
    Beck P; Latocha M; Dorman L; Pelliccioni M; Rollet S
    Radiat Prot Dosimetry; 2007; 126(1-4):564-7. PubMed ID: 17517676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aircraft crew radiation workplaces: comparison of measured and calculated ambient dose equivalent rate data using the EURADOS in-flight radiation data base.
    Beck P; Bartlett D; Lindborg L; McAulay I; Schnuer K; Schraube H; Spurny F
    Radiat Prot Dosimetry; 2006; 118(2):182-9. PubMed ID: 16581920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Responses of selected neutron monitors to cosmic radiation at aviation altitudes.
    Yasuda H; Yajima K; Sato T; Takada M; Nakamura T
    Health Phys; 2009 Jun; 96(6):655-60. PubMed ID: 19430218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dosimetry of secondary cosmic radiation up to an altitude of 30 km.
    Wissmann F; Burda O; Khurana S; Klages T; Langner F
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):299-302. PubMed ID: 24345463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exposure to galactic cosmic radiation and solar energetic particles.
    O'Sullivan D
    Radiat Prot Dosimetry; 2007; 125(1-4):407-11. PubMed ID: 17846031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.