BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 16030230)

  • 1. Swarming differentiation and swimming motility in Bacillus subtilis are controlled by swrA, a newly identified dicistronic operon.
    Calvio C; Celandroni F; Ghelardi E; Amati G; Salvetti S; Ceciliani F; Galizzi A; Senesi S
    J Bacteriol; 2005 Aug; 187(15):5356-66. PubMed ID: 16030230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genes governing swarming in Bacillus subtilis and evidence for a phase variation mechanism controlling surface motility.
    Kearns DB; Chu F; Rudner R; Losick R
    Mol Microbiol; 2004 Apr; 52(2):357-69. PubMed ID: 15066026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-associated flagellum formation and swarming differentiation in Bacillus subtilis are controlled by the ifm locus.
    Senesi S; Ghelardi E; Celandroni F; Salvetti S; Parisio E; Galizzi A
    J Bacteriol; 2004 Feb; 186(4):1158-64. PubMed ID: 14762011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SwrA regulates assembly of Bacillus subtilis DegU via its interaction with N-terminal domain of DegU.
    Ogura M; Tsukahara K
    J Biochem; 2012 Jun; 151(6):643-55. PubMed ID: 22496484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The C-Terminal Region of Bacillus subtilis SwrA Is Required for Activity and Adaptor-Dependent LonA Proteolysis.
    Hughes AC; Subramanian S; Dann CE; Kearns DB
    J Bacteriol; 2018 Mar; 200(6):. PubMed ID: 29311275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell population heterogeneity during growth of Bacillus subtilis.
    Kearns DB; Losick R
    Genes Dev; 2005 Dec; 19(24):3083-94. PubMed ID: 16357223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of surfactin and SwrA to flagellin expression, swimming, and surface motility in Bacillus subtilis.
    Ghelardi E; Salvetti S; Ceragioli M; Gueye SA; Celandroni F; Senesi S
    Appl Environ Microbiol; 2012 Sep; 78(18):6540-4. PubMed ID: 22773650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MotPS is the stator-force generator for motility of alkaliphilic Bacillus, and its homologue is a second functional Mot in Bacillus subtilis.
    Ito M; Hicks DB; Henkin TM; Guffanti AA; Powers BD; Zvi L; Uematsu K; Krulwich TA
    Mol Microbiol; 2004 Aug; 53(4):1035-49. PubMed ID: 15306009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autoregulation of swrAA and motility in Bacillus subtilis.
    Calvio C; Osera C; Amati G; Galizzi A
    J Bacteriol; 2008 Aug; 190(16):5720-8. PubMed ID: 18567663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of SwrA, DegU and P(D3) in fla/che expression in B. subtilis.
    Mordini S; Osera C; Marini S; Scavone F; Bellazzi R; Galizzi A; Calvio C
    PLoS One; 2013; 8(12):e85065. PubMed ID: 24386445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Yersinia enterocolitica motility master regulatory operon, flhDC, is required for flagellin production, swimming motility, and swarming motility.
    Young GM; Smith MJ; Minnich SA; Miller VL
    J Bacteriol; 1999 May; 181(9):2823-33. PubMed ID: 10217774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laboratory strains of Bacillus subtilis do not exhibit swarming motility.
    Patrick JE; Kearns DB
    J Bacteriol; 2009 Nov; 191(22):7129-33. PubMed ID: 19749039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The riboflavin kinase encoding gene ribR of Bacillus subtilis is a part of a 10 kb operon, which is negatively regulated by the yrzC gene product.
    Solovieva IM; Kreneva RA; Errais Lopes L; Perumov DA
    FEMS Microbiol Lett; 2005 Feb; 243(1):51-8. PubMed ID: 15668000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SwrD (YlzI) Promotes Swarming in Bacillus subtilis by Increasing Power to Flagellar Motors.
    Hall AN; Subramanian S; Oshiro RT; Canzoneri AK; Kearns DB
    J Bacteriol; 2018 Jan; 200(2):. PubMed ID: 29061663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Analysis of the primary structure of the supplementary regulatory region of the riboflavin operon in Bacillus subtilis].
    Gusarov II; Solov'eva IM; Iomantas IuA; Kreneva RA; Kozlov IuI; Perumov DA
    Genetika; 1997 Sep; 33(9):1319-22. PubMed ID: 9445827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptor-mediated Lon proteolysis restricts Bacillus subtilis hyperflagellation.
    Mukherjee S; Bree AC; Liu J; Patrick JE; Chien P; Kearns DB
    Proc Natl Acad Sci U S A; 2015 Jan; 112(1):250-5. PubMed ID: 25538299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of the rocDEF operon involved in arginine catabolism in Bacillus subtilis.
    Gardan R; Rapoport G; Débarbouillé M
    J Mol Biol; 1995 Jun; 249(5):843-56. PubMed ID: 7540694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extra-chromosomal DNA maintenance in Bacillus subtilis, dependence on flagellation factor FliF and moonlighting mediator EdmS.
    Hakumai Y; Shimomoto K; Ashiuchi M
    Biochem Biophys Res Commun; 2015 May; 460(4):1059-62. PubMed ID: 25843804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a new gene PA5017 involved in flagella-mediated motility, chemotaxis and biofilm formation in Pseudomonas aeruginosa.
    Li Y; Xia H; Bai F; Xu H; Yang L; Yao H; Zhang L; Zhang X; Bai Y; Saris PE; Tolker-Nielsen T; Qiao M
    FEMS Microbiol Lett; 2007 Jul; 272(2):188-95. PubMed ID: 17521365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A molecular clutch disables flagella in the Bacillus subtilis biofilm.
    Blair KM; Turner L; Winkelman JT; Berg HC; Kearns DB
    Science; 2008 Jun; 320(5883):1636-8. PubMed ID: 18566286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.