These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 1603067)

  • 1. Different mechanisms generating sequence variability are revealed in distinct regions of the hydroxyproline-rich glycoprotein gene from maize and related species.
    Raz R; José M; Moya A; Martínez-Izquierdo JA; Puigdomènech P
    Mol Gen Genet; 1992 May; 233(1-2):252-9. PubMed ID: 1603067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of a maize cell wall hydroxyproline-rich glycoprotein gene in early leaf and root vascular differentiation.
    Stiefel V; Ruiz-Avila L; Raz R; Pilar Vallés M; Gómez J; Pagés M; Martínez-Izquierdo JA; Ludevid MD; Langdale JA; Nelson T
    Plant Cell; 1990 Aug; 2(8):785-93. PubMed ID: 2152127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The sequence of a hydroxyproline-rich glycoprotein gene from Sorghum vulgare.
    Raz R; Crétin C; Puigdomènech P; Martínez-Izquierdo JA
    Plant Mol Biol; 1991 Feb; 16(2):365-7. PubMed ID: 1893107
    [No Abstract]   [Full Text] [Related]  

  • 4. mRNA accumulation and promoter activity of the gene coding for a hydroxyproline-rich glycoprotein in Oryza sativa.
    Guo Y; Delseny M; Puigdomènech P
    Plant Mol Biol; 1994 May; 25(2):159-65. PubMed ID: 8018866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional analysis of an Opaque-2-related gene from sorghum.
    Pirovano L; Lanzini S; Hartings H; Lazzaroni N; Rossi V; Joshi R; Thompson RD; Salamini F; Motto M
    Plant Mol Biol; 1994 Feb; 24(3):515-23. PubMed ID: 8123793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maize Sh2 gene is constrained by natural selection but escaped domestication.
    Manicacci D; Falque M; Le Guillou S; Piégu B; Henry AM; Le Guilloux M; Damerval C; De Vienne D
    J Evol Biol; 2007 Mar; 20(2):503-16. PubMed ID: 17305816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic evolution of bz orthologous regions in the Andropogoneae and other grasses.
    Wang Q; Dooner HK
    Plant J; 2012 Oct; 72(2):212-21. PubMed ID: 22621343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular basis for extensin size heterogeneity in two maize varieties.
    Murphy JM; Hood EE
    Plant Mol Biol; 1993 Mar; 21(5):885-93. PubMed ID: 8467081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two genes encoding GF14 (14-3-3) proteins in Zea mays. Structure, expression, and potential regulation by the G-box binding complex.
    de Vetten NC; Ferl RJ
    Plant Physiol; 1994 Dec; 106(4):1593-604. PubMed ID: 7846163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative structural and functional characterization of sorghum and maize duplications containing orthologous myb transcription regulators of 3-deoxyflavonoid biosynthesis.
    Boddu J; Jiang C; Sangar V; Olson T; Peterson T; Chopra S
    Plant Mol Biol; 2006 Jan; 60(2):185-99. PubMed ID: 16429259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular evolutionary characterization of an Activator (Ac)-like transposable element sequence from pearl millet (Pennisetum glaucum) (Poaceae).
    MacRae AF; Huttley GA; Clegg MT
    Genetica; 1994; 92(2):77-89. PubMed ID: 7958939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of regulatory elements of the promoter and the 3' untranslated region of the maize Hrgp gene coding for a cell wall protein.
    Menossi M; Rabaneda F; Puigdomènech P; Martínez-Izquierdo JA
    Plant Cell Rep; 2003 Jun; 21(9):916-23. PubMed ID: 12789511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small auxin upregulated RNA (SAUR) gene family in maize: identification, evolution, and its phylogenetic comparison with Arabidopsis, rice, and sorghum.
    Chen Y; Hao X; Cao J
    J Integr Plant Biol; 2014 Feb; 56(2):133-50. PubMed ID: 24472286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide analysis of WOX gene family in rice, sorghum, maize, Arabidopsis and poplar.
    Zhang X; Zong J; Liu J; Yin J; Zhang D
    J Integr Plant Biol; 2010 Nov; 52(11):1016-26. PubMed ID: 20977659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA rearrangement in orthologous orp regions of the maize, rice and sorghum genomes.
    Ma J; SanMiguel P; Lai J; Messing J; Bennetzen JL
    Genetics; 2005 Jul; 170(3):1209-20. PubMed ID: 15834137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diverged copies of the seed regulatory Opaque-2 gene by a segmental duplication in the progenitor genome of rice, sorghum, and maize.
    Xu JH; Messing J
    Mol Plant; 2008 Sep; 1(5):760-9. PubMed ID: 19825579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and expression analysis of hemoglobin genes from maize (Zea mays ssp. mays) and teosinte (Zea mays ssp. parviglumis).
    Aréchaga-Ocampo E; Saenz-Rivera J; Sarath G; Klucas RV; Arredondo-Peter R
    Biochim Biophys Acta; 2001 Nov; 1522(1):1-8. PubMed ID: 11718894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple variability in the sequence of a family of maize endosperm proteins.
    Prat S; Pérez-Grau L; Puigdomènech P
    Gene; 1987; 52(1):41-9. PubMed ID: 3596247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Esr genes show different levels of expression in the same region of maize endosperm.
    Bonello JF; Opsahl-Ferstad HG; Perez P; Dumas C; Rogowsky PM
    Gene; 2000 Apr; 246(1-2):219-27. PubMed ID: 10767543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of DUF1313 family members across plant species and their association with maize photoperiod sensitivity.
    Li J; Hu E; Chen X; Xu J; Lan H; Li C; Hu Y; Lu Y
    Genomics; 2016 May; 107(5):199-207. PubMed ID: 26772990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.