These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 16032347)

  • 61. Weinreb Amide, Ketone and Amine as Potential and Competitive Secondary Molecular Stations for Dibenzo-[24]Crown-8 in [2]Rotaxane Molecular Shuttles.
    Gauthier M; Coutrot F
    Chemistry; 2021 Dec; 27(70):17576-17580. PubMed ID: 34738683
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Lanthanide(III) complexes with a tetrapyridine pendant-armed macrocyclic ligand: 1H NMR structural determination in solution, X-ray diffraction, and density-functional theory calculations.
    Del C Fernandez-Fernandez M; Bastida R; Macías A; Pérez-Lourido P; Platas-Iglesias C; Valencia L
    Inorg Chem; 2006 May; 45(11):4484-96. PubMed ID: 16711699
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Cationic and Neutral Rotaxanes Having Different Functional Groups in the Axle Molecule and Their Coordination to Pt
    Yu G; Suzaki Y; Osakada K
    Chem Asian J; 2017 Feb; 12(3):372-377. PubMed ID: 27973709
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A fast-moving copper-based molecular shuttle: synthesis and dynamic properties.
    Durola F; Lux J; Sauvage JP
    Chemistry; 2009; 15(16):4124-34. PubMed ID: 19235189
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Solvent- and light-controlled unidirectional transit of a nonsymmetric molecular axle through a nonsymmetric molecular wheel.
    Arduini A; Bussolati R; Credi A; Monaco S; Secchi A; Silvi S; Venturi M
    Chemistry; 2012 Dec; 18(50):16203-13. PubMed ID: 23090856
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Fluorescent perylene diimide rotaxanes: spectroscopic signatures of wheel-chromophore interactions.
    Baggerman J; Jagesar DC; Vallée RA; Hofkens J; De Schryver FC; Schelhase F; Vögtle F; Brouwer AM
    Chemistry; 2007; 13(4):1291-9. PubMed ID: 17066497
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Templated conversion of a crown ether-containing macrobicycle into [2]rotaxanes.
    Mahoney JM; Shukla R; Marshall RA; Beatty AM; Zajicek J; Smith BD
    J Org Chem; 2002 Mar; 67(5):1436-40. PubMed ID: 11871870
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Phosphorus-based functional groups as hydrogen bonding templates for rotaxane formation.
    Ahmed R; Altieri A; D'Souza DM; Leigh DA; Mullen KM; Papmeyer M; Slawin AM; Wong JK; Woollins JD
    J Am Chem Soc; 2011 Aug; 133(31):12304-10. PubMed ID: 21718069
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Unidirectional threading of triphenylureidocalix[6]arene-based wheels: oriented pseudorotaxane synthesis.
    Arduini A; Calzavacca F; Pochini A; Secchi A
    Chemistry; 2003 Feb; 9(3):793-9. PubMed ID: 12569473
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Synthesis of [1]rotaxane via covalent bond formation and its unique fluorescent response by energy transfer in the presence of lithium ion.
    Hiratani K; Kaneyama M; Nagawa Y; Koyama E; Kanesato M
    J Am Chem Soc; 2004 Oct; 126(42):13568-9. PubMed ID: 15493885
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Peptide-based rotaxanes and catenanes: an emerging class of supramolecular chemistry systems.
    Moretto A; Crisma M; Formaggio F; Toniolo C
    Biomol Concepts; 2012 Apr; 3(2):183-92. PubMed ID: 25436531
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Determining the intracellular transport mechanism of a cleft-[2]rotaxane.
    Bao X; Isaacsohn I; Drew AF; Smithrud DB
    J Am Chem Soc; 2006 Sep; 128(37):12229-38. PubMed ID: 16967974
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Molecular dynamics simulation of amphiphilic bistable [2]rotaxane langmuir monolayers at the air/water interface.
    Jang SS; Jang YH; Kim YH; Goddard WA; Choi JW; Heath JR; Laursen BW; Flood AH; Stoddart JF; Nørgaard K; Bjørnholm T
    J Am Chem Soc; 2005 Oct; 127(42):14804-16. PubMed ID: 16231934
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Four-State Molecular Shuttling of [2]Rotaxanes in Response to Acid/Base and Alkali-Metal Cation Stimuli.
    Kimura M; Mizuno T; Ueda M; Miyagawa S; Kawasaki T; Tokunaga Y
    Chem Asian J; 2017 Jun; 12(12):1381-1390. PubMed ID: 28409890
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Induction of motion in a synthetic molecular machine: effect of tuning the driving force.
    Baggerman J; Haraszkiewicz N; Wiering PG; Fioravanti G; Marcaccio M; Paolucci F; Kay ER; Leigh DA; Brouwer AM
    Chemistry; 2013 Apr; 19(18):5566-77. PubMed ID: 23564495
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Anion-Mediated Photophysical Behavior in a C
    Barendt TA; Rašović I; Lebedeva MA; Farrow GA; Auty A; Chekulaev D; Sazanovich IV; Weinstein JA; Porfyrakis K; Beer PD
    J Am Chem Soc; 2018 Feb; 140(5):1924-1936. PubMed ID: 29337535
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Temperature-dependent and friction-controlled electrochemically induced shuttling along molecular strings associated with electrodes.
    Katz E; Baron R; Willner I; Richke N; Levine RD
    Chemphyschem; 2005 Oct; 6(10):2179-89. PubMed ID: 16208742
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Structure and spectroscopy of oxyluciferin, the light emitter of the firefly bioluminescence.
    Naumov P; Ozawa Y; Ohkubo K; Fukuzumi S
    J Am Chem Soc; 2009 Aug; 131(32):11590-605. PubMed ID: 19722653
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Parking and restarting a molecular shuttle in situ.
    Chen NC; Lai CC; Liu YH; Peng SM; Chiu SH
    Chemistry; 2008; 14(9):2904-8. PubMed ID: 18213659
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Thermally Driven Dynamics of a Rotaxane Wheel about an Imidazolium Axle inside a Metal-Organic Framework.
    Farahani N; Zhu K; O'Keefe CA; Schurko RW; Loeb SJ
    Chempluschem; 2016 Aug; 81(8):836-841. PubMed ID: 31968814
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.