These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
853 related articles for article (PubMed ID: 16032387)
1. A new scenario of plastid evolution: plastid primary endosymbiosis before the divergence of the "Plantae," emended. Nozaki H J Plant Res; 2005 Aug; 118(4):247-55. PubMed ID: 16032387 [TBL] [Abstract][Full Text] [Related]
2. The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids. Nozaki H; Matsuzaki M; Takahara M; Misumi O; Kuroiwa H; Hasegawa M; Shin-i T; Kohara Y; Ogasawara N; Kuroiwa T J Mol Evol; 2003 Apr; 56(4):485-97. PubMed ID: 12664168 [TBL] [Abstract][Full Text] [Related]
3. Phylogeny of plastids based on cladistic analysis of gene loss inferred from complete plastid genome sequences. Nozaki H; Ohta N; Matsuzaki M; Misumi O; Kuroiwa T J Mol Evol; 2003 Oct; 57(4):377-82. PubMed ID: 14708571 [TBL] [Abstract][Full Text] [Related]
4. Cyanobacterial genes transmitted to the nucleus before divergence of red algae in the Chromista. Nozaki H; Matsuzaki M; Misumi O; Kuroiwa H; Hasegawa M; Higashiyama T; Shin-I T; Kohara Y; Ogasawara N; Kuroiwa T J Mol Evol; 2004 Jul; 59(1):103-13. PubMed ID: 15383913 [TBL] [Abstract][Full Text] [Related]
5. A "green" phosphoribulokinase in complex algae with red plastids: evidence for a single secondary endosymbiosis leading to haptophytes, cryptophytes, heterokonts, and dinoflagellates. Petersen J; Teich R; Brinkmann H; Cerff R J Mol Evol; 2006 Feb; 62(2):143-57. PubMed ID: 16474987 [TBL] [Abstract][Full Text] [Related]
6. Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes. Oborník M; Green BR Mol Biol Evol; 2005 Dec; 22(12):2343-53. PubMed ID: 16093570 [TBL] [Abstract][Full Text] [Related]
7. Did some red alga-derived plastids evolve via kleptoplastidy? A hypothesis. Bodył A Biol Rev Camb Philos Soc; 2018 Feb; 93(1):201-222. PubMed ID: 28544184 [TBL] [Abstract][Full Text] [Related]
8. The endosymbiotic origin, diversification and fate of plastids. Keeling PJ Philos Trans R Soc Lond B Biol Sci; 2010 Mar; 365(1541):729-48. PubMed ID: 20124341 [TBL] [Abstract][Full Text] [Related]
9. Origin and distribution of Calvin cycle fructose and sedoheptulose bisphosphatases in plantae and complex algae: a single secondary origin of complex red plastids and subsequent propagation via tertiary endosymbioses. Teich R; Zauner S; Baurain D; Brinkmann H; Petersen J Protist; 2007 Jul; 158(3):263-76. PubMed ID: 17368985 [TBL] [Abstract][Full Text] [Related]
10. Complex Endosymbioses I: From Primary to Complex Plastids, Serial Endosymbiotic Events. Füssy Z; Oborník M Methods Mol Biol; 2024; 2776():21-41. PubMed ID: 38502496 [TBL] [Abstract][Full Text] [Related]
11. Plastids and protein targeting. McFadden GI J Eukaryot Microbiol; 1999; 46(4):339-46. PubMed ID: 10461382 [TBL] [Abstract][Full Text] [Related]
12. Did trypanosomatid parasites contain a eukaryotic alga-derived plastid in their evolutionary past? Bodył A; Mackiewicz P; Milanowski R J Parasitol; 2010 Apr; 96(2):465-75. PubMed ID: 20540605 [TBL] [Abstract][Full Text] [Related]
13. Phylogenomic analysis identifies red algal genes of endosymbiotic origin in the chromalveolates. Li S; Nosenko T; Hackett JD; Bhattacharya D Mol Biol Evol; 2006 Mar; 23(3):663-74. PubMed ID: 16357039 [TBL] [Abstract][Full Text] [Related]
14. Phylogenomic analysis of "red" genes from two divergent species of the "green" secondary phototrophs, the chlorarachniophytes, suggests multiple horizontal gene transfers from the red lineage before the divergence of extant chlorarachniophytes. Yang Y; Matsuzaki M; Takahashi F; Qu L; Nozaki H PLoS One; 2014; 9(6):e101158. PubMed ID: 24972019 [TBL] [Abstract][Full Text] [Related]
15. Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor. Deusch O; Landan G; Roettger M; Gruenheit N; Kowallik KV; Allen JF; Martin W; Dagan T Mol Biol Evol; 2008 Apr; 25(4):748-61. PubMed ID: 18222943 [TBL] [Abstract][Full Text] [Related]
16. Two types of FtsZ proteins in mitochondria and red-lineage chloroplasts: the duplication of FtsZ is implicated in endosymbiosis. Miyagishima SY; Nozaki H; Nishida K; Nishida K; Matsuzaki M; Kuroiwa T J Mol Evol; 2004 Mar; 58(3):291-303. PubMed ID: 15045484 [TBL] [Abstract][Full Text] [Related]
17. Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Rodríguez-Ezpeleta N; Brinkmann H; Burey SC; Roure B; Burger G; Löffelhardt W; Bohnert HJ; Philippe H; Lang BF Curr Biol; 2005 Jul; 15(14):1325-30. PubMed ID: 16051178 [TBL] [Abstract][Full Text] [Related]
18. Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae). Cavalier-Smith T Philos Trans R Soc Lond B Biol Sci; 2003 Jan; 358(1429):109-33; discussion 133-4. PubMed ID: 12594921 [TBL] [Abstract][Full Text] [Related]
19. Chromalveolates and the evolution of plastids by secondary endosymbiosis. Keeling PJ J Eukaryot Microbiol; 2009; 56(1):1-8. PubMed ID: 19335769 [TBL] [Abstract][Full Text] [Related]
20. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Cavalier-Smith T Int J Syst Evol Microbiol; 2002 Mar; 52(Pt 2):297-354. PubMed ID: 11931142 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]