These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 16032848)

  • 1. Existence and stability of new nanoreactors: highly swollen hexagonal liquid crystals.
    Pena dos Santos E; Tokumoto MS; Surendran G; Remita H; Bourgaux C; Dieudonné P; Prouzet E; Ramos L
    Langmuir; 2005 May; 21(10):4362-9. PubMed ID: 16032848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Swollen hexagonal liquid crystals as smart nanoreactors: implementation in materials chemistry for energy applications.
    Ghosh S; Ramos L; Remita H
    Nanoscale; 2018 Mar; 10(13):5793-5819. PubMed ID: 29547217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution structural elucidation of extremely swollen lyotropic phases.
    Matthews L; Narayanan T
    J Colloid Interface Sci; 2022 Mar; 610():359-367. PubMed ID: 34923273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase behavior of an extended surfactant in water and a detailed characterization of the concentrated phases.
    Klaus A; Tiddy GJ; Touraud D; Schramm A; Stühler G; Kunz W
    Langmuir; 2010 Nov; 26(22):16871-83. PubMed ID: 20929210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small-angle scattering from hexagonal liquid crystals.
    Freiberger N; Glatter O
    J Phys Chem B; 2006 Aug; 110(30):14719-27. PubMed ID: 16869579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-walled carbon nanotube/lyotropic liquid crystal hybrid materials fabricated by a phase separation method in the presence of polyelectrolyte.
    Xin X; Li H; Kalwarczyk E; Kelm A; Fiałkowski M; Gorecka E; Pociecha D; Hołyst R
    Langmuir; 2010 Jun; 26(11):8821-8. PubMed ID: 20411938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copolymer-induced stabilizing effect of highly swollen hexagonal mesophases.
    Ramos L; Ligoure C
    Langmuir; 2008 May; 24(10):5221-4. PubMed ID: 18407677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solvent and Substituent Effects on the Aggregation Behavior of Surface-Active Ionic Liquids with Aromatic Counterions and the Dispersion of Carbon Nanotubes in their Hexagonal Liquid Crystalline Phase.
    Xu W; Yin Q; Gao Y; Yu L
    Langmuir; 2015 Nov; 31(46):12644-52. PubMed ID: 26549825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of surfactant tail branching and organization on the orientation of liquid crystals at aqueous-liquid crystal interfaces.
    Lockwood NA; de Pablo JJ; Abbott NL
    Langmuir; 2005 Jul; 21(15):6805-14. PubMed ID: 16008390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solubilization of triglycerides in liquid crystals of nonionic surfactant.
    Alam MM; Varade D; Aramaki K
    J Colloid Interface Sci; 2008 Sep; 325(1):243-9. PubMed ID: 18632110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micellar Mimicry of Intermetallic C14 and C15 Laves Phases by Aqueous Lyotropic Self-Assembly.
    Baez-Cotto CM; Mahanthappa MK
    ACS Nano; 2018 Apr; 12(4):3226-3234. PubMed ID: 29611426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting Sizes of Hexagonal and Gyroid Metal Nanostructures from Liquid Crystal Templating.
    Asghar KA; Rowlands DA; Elliott JM; Squires AM
    ACS Nano; 2015 Nov; 9(11):10970-8. PubMed ID: 26493862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hexagonal liquid crystalline phases formed in ternary systems of Brij 97-water-ionic liquids.
    Wang Z; Liu F; Gao Y; Zhuang W; Xu L; Han B; Li G; Zhang G
    Langmuir; 2005 May; 21(11):4931-7. PubMed ID: 15896033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of liquid-crystalline structures in the bile salt-chitosan system and triggered release from lamellar phase bile salt-chitosan capsules.
    Tangso KJ; Lindberg S; Hartley PG; Knott R; Spicer P; Boyd BJ
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12363-71. PubMed ID: 25050454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing thermal stability and mechanical properties of lyotropic liquid crystals through incorporation of a polymerizable surfactant.
    Peng S; Hartley PG; Hughes TC; Guo Q
    Soft Matter; 2015 Aug; 11(31):6318-26. PubMed ID: 26166631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remarkable features in lattice-parameter ratios of crystals. I. Orthorhombic, tetragonal and hexagonal crystals.
    de Gelder R; Janner A
    Acta Crystallogr B; 2005 Jun; 61(Pt 3):287-95. PubMed ID: 15914893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of circular cylinders as surrogates for hexagonal pristine ice crystals in scattering calculations at infrared wavelengths.
    Lee YK; Yang P; Mishchenko MI; Baum BA; Hu YX; Huang HL; Wiscombe WJ; Baran AJ
    Appl Opt; 2003 May; 42(15):2653-64. PubMed ID: 12777000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein extraction into the bicontinuous microemulsion phase of a Water/SDS/pentanol/dodecane winsor-III system: Effect on nanostructure and protein conformation.
    Hayes DG; Ye R; Dunlap RN; Cuneo MJ; Pingali SV; O'Neill HM; Urban VS
    Colloids Surf B Biointerfaces; 2017 Dec; 160():144-153. PubMed ID: 28922633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycerol-induced swollen lamellar phases with siloxane copolymers.
    Zou A; Hoffmann H; Eastoe J; Glatter O
    J Colloid Interface Sci; 2007 Dec; 316(2):723-9. PubMed ID: 17900603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of non-ionic organic pollutants from water via liquid-liquid extraction.
    López-Montilla JC; Pandey S; Shah DO; Crisalle OD
    Water Res; 2005 May; 39(9):1907-13. PubMed ID: 15899289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.