BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 16033430)

  • 1. Microarray analysis of genes showing variable expression following a blood meal in Anopheles gambiae.
    Marinotti O; Nguyen QK; Calvo E; James AA; Ribeiro JM
    Insect Mol Biol; 2005 Aug; 14(4):365-73. PubMed ID: 16033430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide analysis of gene expression in adult Anopheles gambiae.
    Marinotti O; Calvo E; Nguyen QK; Dissanayake S; Ribeiro JM; James AA
    Insect Mol Biol; 2006 Feb; 15(1):1-12. PubMed ID: 16469063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The accumulation of specific mRNAs following multiple blood meals in Anopheles gambiae.
    Nirmala X; Marinotti O; James AA
    Insect Mol Biol; 2005 Jan; 14(1):95-103. PubMed ID: 15663779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential expression of the detoxification genes in the different life stages of the malaria vector Anopheles gambiae.
    Strode C; Steen K; Ortelli F; Ranson H
    Insect Mol Biol; 2006 Aug; 15(4):523-30. PubMed ID: 16907839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Anopheles gambiae vitellogenin gene (VGT2) promoter directs persistent accumulation of a reporter gene product in transgenic Anopheles stephensi following multiple bloodmeals.
    Chen XG; Marinotti O; Whitman L; Jasinskiene N; James AA; Romans P
    Am J Trop Med Hyg; 2007 Jun; 76(6):1118-24. PubMed ID: 17556621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional genomic analysis of midgut epithelial responses in Anopheles during Plasmodium invasion.
    Vlachou D; Schlegelmilch T; Christophides GK; Kafatos FC
    Curr Biol; 2005 Jul; 15(13):1185-95. PubMed ID: 16005290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microarray-based survey of a subset of putative olfactory genes in the mosquito Anopheles gambiae.
    Biessmann H; Nguyen QK; Le D; Walter MF
    Insect Mol Biol; 2005 Dec; 14(6):575-89. PubMed ID: 16313558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and expression of the lipophorin-encoding gene of the malaria vector, Anopheles gambiae.
    Marinotti O; Capurro Mde L; Nirmala X; Calvo E; James AA
    Comp Biochem Physiol B Biochem Mol Biol; 2006 May; 144(1):101-9. PubMed ID: 16524752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene expression in insecticide resistant and susceptible Anopheles gambiae strains constitutively or after insecticide exposure.
    Vontas J; Blass C; Koutsos AC; David JP; Kafatos FC; Louis C; Hemingway J; Christophides GK; Ranson H
    Insect Mol Biol; 2005 Oct; 14(5):509-21. PubMed ID: 16164607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Profiling of gender-regulated gene transcripts in the filarial nematode Brugia malayi by cDNA oligonucleotide array analysis.
    Li BW; Rush AC; Crosby SD; Warren WC; Williams SA; Mitreva M; Weil GJ
    Mol Biochem Parasitol; 2005 Sep; 143(1):49-57. PubMed ID: 15992941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterization of the receptor for the Bacillus sphaericus binary toxin in the malaria vector mosquito, Anopheles gambiae.
    Opota O; Charles JF; Warot S; Pauron D; Darboux I
    Comp Biochem Physiol B Biochem Mol Biol; 2008 Mar; 149(3):419-27. PubMed ID: 18086545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Female-biased gene expression in the malaria mosquito Anopheles gambiae.
    Hahn MW; Lanzaro GC
    Curr Biol; 2005 Mar; 15(6):R192-3. PubMed ID: 15797007
    [No Abstract]   [Full Text] [Related]  

  • 13. cpbAg1 encodes an active carboxypeptidase B expressed in the midgut of Anopheles gambiae.
    Lavazec C; Bonnet S; Thiery I; Boisson B; Bourgouin C
    Insect Mol Biol; 2005 Apr; 14(2):163-74. PubMed ID: 15796749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in gene expression in the permissive larval host lightbrown apple moth (Epiphyas postvittana, Tortricidae) in response to EppoNPV (Baculoviridae) infection.
    Gatehouse HS; Poulton J; Markwick NP; Gatehouse LN; Ward VK; Young VL; Luo Z; Schaffer R; Christeller JT
    Insect Mol Biol; 2009 Oct; 18(5):635-48. PubMed ID: 19754741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two serine proteases from Anopheles dirus haemocytes exhibit changes in transcript abundance after infection of an incompatible rodent malaria parasite, Plasmodium yoelii.
    Xu W; Huang FS; Hao HX; Duan JH; Qiu ZW
    Vet Parasitol; 2006 Jun; 139(1-3):93-101. PubMed ID: 16567047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oligonucleotide microarray analysis of human lens epithelial cells: TGFbeta regulated gene expression.
    Dawes LJ; Elliott RM; Reddan JR; Wormstone YM; Wormstone IM
    Mol Vis; 2007 Jul; 13():1181-97. PubMed ID: 17679943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling nonlinearity in dilution design microarray data.
    Zheng X; Huang HC; Li W; Liu P; Li QZ; Liu Y
    Bioinformatics; 2007 Jun; 23(11):1339-47. PubMed ID: 17237040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global gene expression analysis of Anopheles gambiae responses to microbial challenge.
    Aguilar R; Jedlicka AE; Mintz M; Mahairaki V; Scott AL; Dimopoulos G
    Insect Biochem Mol Biol; 2005 Jul; 35(7):709-19. PubMed ID: 15894188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional genomics studies of oocyte competence: evidence that reduced transcript abundance for follistatin is associated with poor developmental competence of bovine oocytes.
    Patel OV; Bettegowda A; Ireland JJ; Coussens PM; Lonergan P; Smith GW
    Reproduction; 2007 Jan; 133(1):95-106. PubMed ID: 17244736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reverse genetics analysis of antiparasitic responses in the malaria vector, Anopheles gambiae.
    Blandin SA; Levashina EA
    Methods Mol Biol; 2008; 415():365-77. PubMed ID: 18370165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.