BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 16033553)

  • 1. Proximate causes of adaptive growth rates: growth efficiency variation among latitudinal populations of Rana temporaria.
    Lindgren B; Laurila A
    J Evol Biol; 2005 Jul; 18(4):820-8. PubMed ID: 16033553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cool tadpoles from Arctic environments waste fewer nutrients - high gross growth efficiencies lead to low consumer-mediated nutrient recycling in the North.
    Liess A; Guo J; Lind MI; Rowe O
    J Anim Ecol; 2015 Nov; 84(6):1744-56. PubMed ID: 26239271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hot tadpoles from cold environments need more nutrients--life history and stoichiometry reflects latitudinal adaptation.
    Liess A; Rowe O; Guo J; Thomsson G; Lind MI
    J Anim Ecol; 2013 Nov; 82(6):1316-25. PubMed ID: 23927760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Latitudinal and temperature-dependent variation in embryonic development and growth in Rana temporaria.
    Laugen AT; Laurila A; Merilä J
    Oecologia; 2003 May; 135(4):548-54. PubMed ID: 16228254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antipredator defenses along a latitudinal gradient in Rana temporaria.
    Laurila A; Lindgren B; Laugen AT
    Ecology; 2008 May; 89(5):1399-413. PubMed ID: 18543632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inter- and intrapopulation variation in thermal reaction norms for growth rate: evolution of latitudinal compensation in ectotherms with a genetic constraint.
    Yamahira K; Kawajiri M; Takeshi K; Irie T
    Evolution; 2007 Jul; 61(7):1577-89. PubMed ID: 17598741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geographic variation in corticosterone response to chronic predator stress in tadpoles.
    Dahl E; Orizaola G; Winberg S; Laurila A
    J Evol Biol; 2012 Jun; 25(6):1066-76. PubMed ID: 22587843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behaviour and physiology shape the growth accelerations associated with predation risk, high temperatures and southern latitudes in Ischnura damselfly larvae.
    Stoks R; Swillen I; De Block M
    J Anim Ecol; 2012 Sep; 81(5):1034-40. PubMed ID: 22524392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variation in the degree and costs of adaptive phenotypic plasticity among Rana temporaria populations.
    Merilä J; Laurila A; Lindgren B
    J Evol Biol; 2004 Sep; 17(5):1132-40. PubMed ID: 15312085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-equivalence of growth arrest induced by predation risk or food limitation: context-dependent compensatory growth in anuran tadpoles.
    Capellán E; Nicieza AG
    J Anim Ecol; 2007 Sep; 76(5):1026-35. PubMed ID: 17714281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Population origin, development and temperature of development affect the amounts of HSP70, HSP90 and the putative hypoxia-inducible factor in the tadpoles of the common frog Rana temporaria.
    Nikinmaa M; Leveelahti L; Dahl E; Rissanen E; Rytkönen KT; Laurila A
    J Exp Biol; 2008 Jun; 211(Pt 12):1999-2004. PubMed ID: 18515731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variation in UV sensitivity among common frog Rana temporaria populations along an altitudinal gradient.
    Marquis O; Miaud C
    Zoology (Jena); 2008; 111(4):309-17. PubMed ID: 18495447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Habitat specialization and adaptive phenotypic divergence of anuran populations.
    Van Buskirk J; Arioli M
    J Evol Biol; 2005 May; 18(3):596-608. PubMed ID: 15842489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Latitudinal and voltinism compensation shape thermal reaction norms for growth rate.
    Shama LN; Campero-Paz M; Wegner KM; DE Block M; Stoks R
    Mol Ecol; 2011 Jul; 20(14):2929-41. PubMed ID: 21689189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The degree of adaptive phenotypic plasticity is correlated with the spatial environmental heterogeneity experienced by island populations of Rana temporaria.
    Lind MI; Johansson F
    J Evol Biol; 2007 Jul; 20(4):1288-97. PubMed ID: 17584224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time constraints and flexibility of growth strategies: geographic variation in catch-up growth responses in amphibian larvae.
    Dahl E; Orizaola G; Nicieza AG; Laurila A
    J Anim Ecol; 2012 Nov; 81(6):1233-1243. PubMed ID: 22742783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interpopulational variation in recovery time from chill coma along a geographic gradient: a study in the common woodlouse, Porcellio laevis.
    Castañeda LE; Lardies MA; Bozinovic F
    J Insect Physiol; 2005 Dec; 51(12):1346-51. PubMed ID: 16197957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predation- and competition-mediated brain plasticity in Rana temporaria tadpoles.
    Gonda A; Trokovic N; Herczeg G; Laurila A; Merilä J
    J Evol Biol; 2010 Nov; 23(11):2300-8. PubMed ID: 20964761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Testing the role of phenotypic plasticity for local adaptation: growth and development in time-constrained Rana temporaria populations.
    Lind MI; Johansson F
    J Evol Biol; 2011 Dec; 24(12):2696-704. PubMed ID: 21954876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Does habitat fragmentation reduce fitness and adaptability? A case study of the common frog (Rana temporaria).
    Johansson M; Primmer CR; Merilä J
    Mol Ecol; 2007 Jul; 16(13):2693-700. PubMed ID: 17594440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.