BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 16033758)

  • 1. The core histone N-terminal tail domains function independently and additively during salt-dependent oligomerization of nucleosomal arrays.
    Gordon F; Luger K; Hansen JC
    J Biol Chem; 2005 Oct; 280(40):33701-6. PubMed ID: 16033758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determinants of histone H4 N-terminal domain function during nucleosomal array oligomerization: roles of amino acid sequence, domain length, and charge density.
    McBryant SJ; Klonoski J; Sorensen TC; Norskog SS; Williams S; Resch MG; Toombs JA; Hobdey SE; Hansen JC
    J Biol Chem; 2009 Jun; 284(25):16716-16722. PubMed ID: 19395382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid trypsinized nucleosomal arrays: identification of multiple functional roles of the H2A/H2B and H3/H4 N-termini in chromatin fiber compaction.
    Tse C; Hansen JC
    Biochemistry; 1997 Sep; 36(38):11381-8. PubMed ID: 9298957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A distinct switch in interactions of the histone H4 tail domain upon salt-dependent folding of nucleosome arrays.
    Pepenella S; Murphy KJ; Hayes JJ
    J Biol Chem; 2014 Sep; 289(39):27342-27351. PubMed ID: 25122771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of direct interactions between the histone H4 Tail and the H2A core in long range nucleosome contacts.
    Sinha D; Shogren-Knaak MA
    J Biol Chem; 2010 May; 285(22):16572-81. PubMed ID: 20351095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intra- and inter-nucleosomal protein-DNA interactions of the core histone tail domains in a model system.
    Zheng C; Hayes JJ
    J Biol Chem; 2003 Jun; 278(26):24217-24. PubMed ID: 12697747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linker histones stabilize the intrinsic salt-dependent folding of nucleosomal arrays: mechanistic ramifications for higher-order chromatin folding.
    Carruthers LM; Bednar J; Woodcock CL; Hansen JC
    Biochemistry; 1998 Oct; 37(42):14776-87. PubMed ID: 9778352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The core histone N termini function independently of linker histones during chromatin condensation.
    Carruthers LM; Hansen JC
    J Biol Chem; 2000 Nov; 275(47):37285-90. PubMed ID: 10970897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salt-dependent intra- and internucleosomal interactions of the H3 tail domain in a model oligonucleosomal array.
    Zheng C; Lu X; Hansen JC; Hayes JJ
    J Biol Chem; 2005 Sep; 280(39):33552-7. PubMed ID: 16079127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HMGN1 and 2 remodel core and linker histone tail domains within chromatin.
    Murphy KJ; Cutter AR; Fang H; Postnikov YV; Bustin M; Hayes JJ
    Nucleic Acids Res; 2017 Sep; 45(17):9917-9930. PubMed ID: 28973435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assembly of nucleosomal arrays from recombinant core histones and nucleosome positioning DNA.
    Rogge RA; Kalashnikova AA; Muthurajan UM; Porter-Goff ME; Luger K; Hansen JC
    J Vis Exp; 2013 Sep; (79):. PubMed ID: 24056546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of interactions between nucleosome arrays mediated by specific core histone tail domains.
    Kan PY; Hayes JJ
    Methods; 2007 Mar; 41(3):278-85. PubMed ID: 17309837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive structural analysis of mutant nucleosomes containing lysine to glutamine (KQ) substitutions in the H3 and H4 histone-fold domains.
    Iwasaki W; Tachiwana H; Kawaguchi K; Shibata T; Kagawa W; Kurumizaka H
    Biochemistry; 2011 Sep; 50(36):7822-32. PubMed ID: 21812398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetylation mimics within individual core histone tail domains indicate distinct roles in regulating the stability of higher-order chromatin structure.
    Wang X; Hayes JJ
    Mol Cell Biol; 2008 Jan; 28(1):227-36. PubMed ID: 17938198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromatin fiber folding: requirement for the histone H4 N-terminal tail.
    Dorigo B; Schalch T; Bystricky K; Richmond TJ
    J Mol Biol; 2003 Mar; 327(1):85-96. PubMed ID: 12614610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The nucleosomal array: structure/function relationships.
    Fletcher TM; Hansen JC
    Crit Rev Eukaryot Gene Expr; 1996; 6(2-3):149-88. PubMed ID: 8855387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the N-terminal tail domain of histone H3 in condensed nucleosome arrays by hydrogen exchange and NMR.
    Kato H; Gruschus J; Ghirlando R; Tjandra N; Bai Y
    J Am Chem Soc; 2009 Oct; 131(42):15104-5. PubMed ID: 19795894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The N-terminal tail of histone H2A binds to two distinct sites within the nucleosome core.
    Lee KM; Hayes JJ
    Proc Natl Acad Sci U S A; 1997 Aug; 94(17):8959-64. PubMed ID: 9256417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Major role of the histones H3-H4 in the folding of the chromatin fiber.
    Moore SC; AusiĆ³ J
    Biochem Biophys Res Commun; 1997 Jan; 230(1):136-9. PubMed ID: 9020030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The N-terminus of histone H2B, but not that of histone H3 or its phosphorylation, is essential for chromosome condensation.
    de la Barre AE; Angelov D; Molla A; Dimitrov S
    EMBO J; 2001 Nov; 20(22):6383-93. PubMed ID: 11707409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.