BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 160338)

  • 1. Mechanism of calcium-independent phosphorylation of sarcoplasmic reticulum ATPase by orthophosphat. Evidence of magnesium-phosphoprotein formation.
    Kolassa N; Punzengruber C; Suko J; Makinose M
    FEBS Lett; 1979 Dec; 108(2):495-500. PubMed ID: 160338
    [No Abstract]   [Full Text] [Related]  

  • 2. Formation of magnesium-phosphoenzyme and magnesium-calcium-phosphoenzyme in the phosphorylation of adenosine triphosphatase by orthophosphate in sarcoplasmic reticulum. Models of a reaction sequence.
    Suko J; Plank B; Preis P; Kolassa N; Hellmann G; Conca W
    Eur J Biochem; 1981 Oct; 119(2):225-36. PubMed ID: 6458492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential reactions in Pi utilization for ATP synthesis by sarcoplasmic reticulum.
    Chaloub RM; Guimaraes-Motta H; Verjovski-Almeida S; de Meis L; Inesi G
    J Biol Chem; 1979 Oct; 254(19):9464-8. PubMed ID: 158589
    [No Abstract]   [Full Text] [Related]  

  • 4. Ionized and bound calcium inside isolated sarcoplasmic reticulum of skeletal muscle and its significance in phosphorylation of adenosine triphosphatase by orthophosphate.
    Prager R; Punzengruber C; Kolassa N; Winkler F; Suko J
    Eur J Biochem; 1979 Jun; 97(1):239-50. PubMed ID: 157875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation of sarcoplasmic reticulum ATPase by orthophosphate in the absence of Ca2+ gradient. Contribution of water activity to the enthalpy and the entropy changes.
    de Meis L; de Souza Otero A; Martins OB; Alves EW; Inesi G; Nakamoto R
    J Biol Chem; 1982 May; 257(9):4993-8. PubMed ID: 6461660
    [No Abstract]   [Full Text] [Related]  

  • 6. Factors affecting the transient phase of the Ca2+, Mg2+-dependent ATPase reaction of sarcoplasmic reticulum from skeletal muscle.
    Takisawa H; Tonomura Y
    J Biochem; 1978 May; 83(5):1275-84. PubMed ID: 149120
    [No Abstract]   [Full Text] [Related]  

  • 7. Calcium gradient-dependent and calcium gradient-independent phosphorylation of sarcoplasmic reticulum by orthophosphate. The role of magnesium.
    Punzengruber C; Prager R; Kolassa N; Winkler F; Suko J
    Eur J Biochem; 1978 Dec; 92(2):349-59. PubMed ID: 33042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaction mechanism of the Ca2 plus-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. X. Direct evidence for Ca2 plus translocation coupled with formation of a phosphorylated intermediate.
    Sumida M; Tonomura Y
    J Biochem; 1974 Feb; 75(2):283-97. PubMed ID: 4276200
    [No Abstract]   [Full Text] [Related]  

  • 9. Occlusion of calcium in the ADP-sensitive phosphoenzyme of the adenosine triphosphatase of sarcoplasmic reticulum.
    Takisawa H; Makinose M
    J Biol Chem; 1983 Mar; 258(5):2986-92. PubMed ID: 6219108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Occurrence and characteristics of a rapid exchange of phosphate oxygens catalyzed by sarcoplasmic reticulum vesicles.
    Kanazawa T; Boyer PD
    J Biol Chem; 1973 May; 248(9):3163-72. PubMed ID: 4267042
    [No Abstract]   [Full Text] [Related]  

  • 11. The mechanism of ATP hydrolysis by sacoplasmic reticulum.
    Coffey RL; Lagwinska E; Oliver M; Martonosi A
    Arch Biochem Biophys; 1975 Sep; 170(1):37-48. PubMed ID: 240324
    [No Abstract]   [Full Text] [Related]  

  • 12. Molecular transformations in sarcoplasmic reticulum of fast-twitch muscle by electro-stimulation.
    Heilmann C; Pette D
    Eur J Biochem; 1979 Feb; 93(3):437-46. PubMed ID: 154404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of pretreatment with calcium and magnesium ions on phosphoenzyme formation by sarcoplasmic reticulum ATPase.
    Froehlich JP
    Biophys J; 1978 Oct; 24(1):61-2. PubMed ID: 152132
    [No Abstract]   [Full Text] [Related]  

  • 14. Phosphorylation of the calcium-transport adenosine triphosphate of cardiac sarcoplasmic reticulum by orthophosphate.
    Winkler F; Suko J
    Eur J Biochem; 1977 Aug; 77(3):611-9. PubMed ID: 19259
    [No Abstract]   [Full Text] [Related]  

  • 15. Allosteric modification by K+ of the (Ca2+ + Mg2+)-dependent ATPase of sarcoplasmic reticulum. Interaction with Mg2+.
    Ribeiro JM; Vianna AL
    J Biol Chem; 1978 May; 253(9):3153-7. PubMed ID: 147872
    [No Abstract]   [Full Text] [Related]  

  • 16. Reversal of the sarcoplasmic reticulum ATPase cycle by substituting various cations for magnesium. Phosphorylation and ATP synthesis when Ca2+ replaces Mg2+.
    Mintz E; Lacapère JJ; Guillain F
    J Biol Chem; 1990 Nov; 265(31):18762-8. PubMed ID: 2146262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arginyl residue modification of the sarcoplasmic reticulum ATPase protein.
    Murphy AJ
    Biochem Biophys Res Commun; 1976 Jun; 70(4):1048-54. PubMed ID: 133684
    [No Abstract]   [Full Text] [Related]  

  • 18. Modification of sarcoplasmic reticulum adenosine triphosphatase by adenosine triphosphate magnesium.
    Horgan DJ
    Arch Biochem Biophys; 1974 May; 162(1):6-11. PubMed ID: 4275445
    [No Abstract]   [Full Text] [Related]  

  • 19. Regulation of the calcium pump of cardiac sarcoplasmic reticulum. Interactive roles of potassium and ATP on the phosphoprotein intermediate of the (K+,Ca2+)-ATPase.
    Jones LR; Besch HR; Watanabe AM
    J Biol Chem; 1978 Mar; 253(5):1643-53. PubMed ID: 146716
    [No Abstract]   [Full Text] [Related]  

  • 20. Mechanism of ATP hydrolysis by sarcoplasmic reticulum and the role of phospholipids.
    Nakamura H; Jilka RL; Boland R; Martonosi AN
    J Biol Chem; 1976 Sep; 251(17):5414-23. PubMed ID: 134038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.