BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 16033858)

  • 1. PDZ-binding and di-hydrophobic motifs regulate distribution of Kir4.1 channels in renal cells.
    Tanemoto M; Abe T; Ito S
    J Am Soc Nephrol; 2005 Sep; 16(9):2608-14. PubMed ID: 16033858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PDZ binding motif-dependent localization of K+ channel on the basolateral side in distal tubules.
    Tanemoto M; Abe T; Onogawa T; Ito S
    Am J Physiol Renal Physiol; 2004 Dec; 287(6):F1148-53. PubMed ID: 15292049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MAGI-1a functions as a scaffolding protein for the distal renal tubular basolateral K+ channels.
    Tanemoto M; Toyohara T; Abe T; Ito S
    J Biol Chem; 2008 May; 283(18):12241-7. PubMed ID: 18303016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of the Ca2+-sensing receptor with the inwardly rectifying potassium channels Kir4.1 and Kir4.2 results in inhibition of channel function.
    Huang C; Sindic A; Hill CE; Hujer KM; Chan KW; Sassen M; Wu Z; Kurachi Y; Nielsen S; Romero MF; Miller RT
    Am J Physiol Renal Physiol; 2007 Mar; 292(3):F1073-81. PubMed ID: 17122384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PDZ-binding motifs are unable to ensure correct polarized protein distribution in the absence of additional localization signals.
    Milewski MI; Lopez A; Jurkowska M; Larusch J; Cutting GR
    FEBS Lett; 2005 Jan; 579(2):483-7. PubMed ID: 15642363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scavenging of 14-3-3 proteins reveals their involvement in the cell-surface transport of ATP-sensitive K+ channels.
    Heusser K; Yuan H; Neagoe I; Tarasov AI; Ashcroft FM; Schwappach B
    J Cell Sci; 2006 Oct; 119(Pt 20):4353-63. PubMed ID: 17038548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dystroglycan and Kir4.1 coclustering in retinal Müller glia is regulated by laminin-1 and requires the PDZ-ligand domain of Kir4.1.
    Noël G; Belda M; Guadagno E; Micoud J; Klöcker N; Moukhles H
    J Neurochem; 2005 Aug; 94(3):691-702. PubMed ID: 16033419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Downregulation of Kir4.1 inward rectifying potassium channel subunits by RNAi impairs potassium transfer and glutamate uptake by cultured cortical astrocytes.
    Kucheryavykh YV; Kucheryavykh LY; Nichols CG; Maldonado HM; Baksi K; Reichenbach A; Skatchkov SN; Eaton MJ
    Glia; 2007 Feb; 55(3):274-81. PubMed ID: 17091490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of C-terminus of Kir7.1 potassium channel in cell-surface expression.
    Tateno T; Nakamura N; Hirata Y; Hirose S
    Cell Biol Int; 2006 Mar; 30(3):270-7. PubMed ID: 16406822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distal tubule basolateral potassium channels: cellular and molecular mechanisms of regulation.
    Palygin O; Pochynyuk O; Staruschenko A
    Curr Opin Nephrol Hypertens; 2018 Sep; 27(5):373-378. PubMed ID: 29894319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization, trafficking, and significance for acid secretion of parietal cell Kir4.1 and KCNQ1 K+ channels.
    Kaufhold MA; Krabbenhöft A; Song P; Engelhardt R; Riederer B; Fährmann M; Klöcker N; Beil W; Manns M; Hagen SJ; Seidler U
    Gastroenterology; 2008 Apr; 134(4):1058-69. PubMed ID: 18395087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mislocalization of K+ channels causes the renal salt wasting in EAST/SeSAME syndrome.
    Tanemoto M; Abe T; Uchida S; Kawahara K
    FEBS Lett; 2014 Mar; 588(6):899-905. PubMed ID: 24561201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium influx mediated by the inwardly rectifying K+ channel Kir4.1 (KCNJ10) at low external K+ concentration.
    Härtel K; Singaravelu K; Kaiser M; Neusch C; Hülsmann S; Deitmer JW
    Cell Calcium; 2007 Sep; 42(3):271-80. PubMed ID: 17284334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutational and in silico analyses for antidepressant block of astroglial inward-rectifier Kir4.1 channel.
    Furutani K; Ohno Y; Inanobe A; Hibino H; Kurachi Y
    Mol Pharmacol; 2009 Jun; 75(6):1287-95. PubMed ID: 19264848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of basolateral membrane targeting signal of human sodium-dependent dicarboxylate transporter 3.
    Bai X; Chen X; Feng Z; Hou K; Zhang P; Fu B; Shi S
    J Cell Physiol; 2006 Mar; 206(3):821-30. PubMed ID: 16331647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective Golgi export of Kir2.1 controls the stoichiometry of functional Kir2.x channel heteromers.
    Hofherr A; Fakler B; Klöcker N
    J Cell Sci; 2005 May; 118(Pt 9):1935-43. PubMed ID: 15827083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning, expression, and localization of a rat hepatocyte inwardly rectifying potassium channel.
    Hill CE; Briggs MM; Liu J; Magtanong L
    Am J Physiol Gastrointest Liver Physiol; 2002 Feb; 282(2):G233-40. PubMed ID: 11804844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of Angiotensin II Type 1a Receptor (AT1aR) of Renal Tubules in Regulating Inwardly Rectifying Potassium Channels 4.2 (Kir4.2), Kir4.1, and Epithelial Na
    Duan XP; Xiao Y; Su XT; Zheng JY; Gurley S; Emathinger J; Yang CL; McCormick J; Ellison DH; Lin DH; Wang WH
    Hypertension; 2024 Jan; 81(1):126-137. PubMed ID: 37909221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potassium channel Kir4.1 macromolecular complex in retinal glial cells.
    Connors NC; Kofuji P
    Glia; 2006 Jan; 53(2):124-31. PubMed ID: 16206160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kir4.1/Kir5.1 Activity Is Essential for Dietary Sodium Intake-Induced Modulation of Na-Cl Cotransporter.
    Wu P; Gao ZX; Su XT; Wang MX; Wang WH; Lin DH
    J Am Soc Nephrol; 2019 Feb; 30(2):216-227. PubMed ID: 30559144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.