These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 16033945)

  • 1. Distinct patterns of stimulus generalization of increases and decreases in VOR gain.
    Kimpo RR; Boyden ES; Katoh A; Ke MC; Raymond JL
    J Neurophysiol; 2005 Nov; 94(5):3092-100. PubMed ID: 16033945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis and modeling of frequency-specific habituation of the goldfish vestibulo-ocular reflex.
    Dow ER; Anastasio TJ
    J Comput Neurosci; 1999; 7(1):55-70. PubMed ID: 10482002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal substrates of motor learning in the velocity storage generated during optokinetic stimulation in the squirrel monkey.
    Blazquez PM; Davis-Lopez de Carrizosa MA; Heiney SA; Highstein SM
    J Neurophysiol; 2007 Feb; 97(2):1114-26. PubMed ID: 17093114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. II. Inertial detection of angular velocity.
    Angelaki DE; Hess BJ
    J Neurophysiol; 1996 Jun; 75(6):2425-40. PubMed ID: 8793754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of plasticity and development of mouse optokinetic and vestibulo-ocular reflexes suggests differential gain control mechanisms.
    Faulstich BM; Onori KA; du Lac S
    Vision Res; 2004 Dec; 44(28):3419-27. PubMed ID: 15536010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization and adaptive modification of the goldfish vestibuloocular reflex by sinusoidal and velocity step vestibular stimulation.
    Pastor AM; de la Cruz RR; Baker R
    J Neurophysiol; 1992 Dec; 68(6):2003-15. PubMed ID: 1491254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visually induced adaptation in three-dimensional organization of primate vestibuloocular reflex.
    Angelaki DE; Hess BJ
    J Neurophysiol; 1998 Feb; 79(2):791-807. PubMed ID: 9463442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Normal performance and expression of learning in the vestibulo-ocular reflex (VOR) at high frequencies.
    Ramachandran R; Lisberger SG
    J Neurophysiol; 2005 Apr; 93(4):2028-38. PubMed ID: 15548626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Normal and adapted visuooculomotor reflexes in goldfish.
    Marsh E; Baker R
    J Neurophysiol; 1997 Mar; 77(3):1099-118. PubMed ID: 9084585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversal of motor learning in the vestibulo-ocular reflex in the absence of visual input.
    Cohen MR; Meissner GW; Schafer RJ; Raymond JL
    Learn Mem; 2004; 11(5):559-65. PubMed ID: 15466309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Behavioral analysis of signals that guide learned changes in the amplitude and dynamics of the vestibulo-ocular reflex.
    Raymond JL; Lisberger SG
    J Neurosci; 1996 Dec; 16(23):7791-802. PubMed ID: 8922435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chronic changes in inputs to dorsal Y neurons accompany VOR motor learning.
    Blazquez PM; Hirata Y; Highstein SM
    J Neurophysiol; 2006 Mar; 95(3):1812-25. PubMed ID: 16319196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early components of the human vestibulo-ocular response to head rotation: latency and gain.
    Collewijn H; Smeets JB
    J Neurophysiol; 2000 Jul; 84(1):376-89. PubMed ID: 10899212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capacity of vertical VOR adaptation in squirrel monkey.
    Hirata Y; Lockard JM; Highstein SM
    J Neurophysiol; 2002 Dec; 88(6):3194-207. PubMed ID: 12466440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic properties, interactions and adaptive modifications of vestibulo-ocular reflex and optokinetic response in mice.
    Iwashita M; Kanai R; Funabiki K; Matsuda K; Hirano T
    Neurosci Res; 2001 Mar; 39(3):299-311. PubMed ID: 11248370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Context compensation in the vestibuloocular reflex during active head rotations.
    Medendorp WP; Van Gisbergen JA; Van Pelt S; Gielen CC
    J Neurophysiol; 2000 Dec; 84(6):2904-17. PubMed ID: 11110820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the dorsolateral pontine nucleus in short-term adaptation of the horizontal vestibuloocular reflex.
    Ono S; Das VE; Mustari MJ
    J Neurophysiol; 2003 May; 89(5):2879-85. PubMed ID: 12740419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of the vestibulo-ocular reflex by prior eye movements.
    Das VE; Dell'Osso LF; Leigh RJ
    J Neurophysiol; 1999 Jun; 81(6):2884-92. PubMed ID: 10368405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual influences on the development and recovery of the vestibuloocular reflex in the chicken.
    Goode CT; Maney DL; Rubel EW; Fuchs AF
    J Neurophysiol; 2001 Mar; 85(3):1119-28. PubMed ID: 11247982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetric adaptive gain changes of the vertical vestibulo-ocular reflex in cats.
    Maruyama M; Fushiki H; Yasuda K; Watanabe Y
    Brain Res; 2004 Oct; 1023(2):302-8. PubMed ID: 15374755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.