BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

648 related articles for article (PubMed ID: 16034625)

  • 21. The history and disposition of transposable elements in polyploid Gossypium.
    Hu G; Hawkins JS; Grover CE; Wendel JF
    Genome; 2010 Aug; 53(8):599-607. PubMed ID: 20725147
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolutionary analysis of the CACTA DNA-transposon Caspar across wheat species using sequence comparison and in situ hybridization.
    Sergeeva EM; Salina EA; Adonina IG; Chalhoub B
    Mol Genet Genomics; 2010 Jul; 284(1):11-23. PubMed ID: 20512353
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ancient haplotypes resulting from extensive molecular rearrangements in the wheat A genome have been maintained in species of three different ploidy levels.
    Isidore E; Scherrer B; Chalhoub B; Feuillet C; Keller B
    Genome Res; 2005 Apr; 15(4):526-36. PubMed ID: 15805493
    [TBL] [Abstract][Full Text] [Related]  

  • 24. BAC-FISH in wheat identifies chromosome landmarks consisting of different types of transposable elements.
    Zhang P; Li W; Fellers J; Friebe B; Gill BS
    Chromosoma; 2004 Mar; 112(6):288-99. PubMed ID: 14986017
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The impact of Ty3-gypsy group LTR retrotransposons Fatima on B-genome specificity of polyploid wheats.
    Salina EA; Sergeeva EM; Adonina IG; Shcherban AB; Belcram H; Huneau C; Chalhoub B
    BMC Plant Biol; 2011 Jun; 11():99. PubMed ID: 21635794
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sequence composition, organization, and evolution of the core Triticeae genome.
    Li W; Zhang P; Fellers JP; Friebe B; Gill BS
    Plant J; 2004 Nov; 40(4):500-11. PubMed ID: 15500466
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genomic re-assessment of the transposable element landscape of the potato genome.
    Zavallo D; Crescente JM; Gantuz M; Leone M; Vanzetti LS; Masuelli RW; Asurmendi S
    Plant Cell Rep; 2020 Sep; 39(9):1161-1174. PubMed ID: 32435866
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid development of PCR-based genome-specific repetitive DNA junction markers in wheat.
    Wanjugi H; Coleman-Derr D; Huo N; Kianian SF; Luo MC; Wu J; Anderson O; Gu YQ
    Genome; 2009 Jun; 52(6):576-87. PubMed ID: 19483776
    [TBL] [Abstract][Full Text] [Related]  

  • 29. All families of transposable elements were active in the recent wheat genome evolution and polyploidy had no impact on their activity.
    Papon N; Lasserre-Zuber P; Rimbert H; De Oliveira R; Paux E; Choulet F
    Plant Genome; 2023 Sep; 16(3):e20347. PubMed ID: 37243411
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of orthologous and paralogous DNA flanking the wheat high molecular weight glutenin genes: sequence conservation and divergence, transposon distribution, and matrix-attachment regions.
    Anderson OD; Larka L; Christoffers MJ; McCue KF; Gustafson JP
    Genome; 2002 Apr; 45(2):367-80. PubMed ID: 11962634
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization and phylogenetic analysis of α-gliadin gene sequences reveals significant genomic divergence in Triticeae species.
    Li GR; Lang T; Yang EN; Liu C; Yang ZJ
    J Genet; 2014 Dec; 93(3):725-31. PubMed ID: 25572231
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polyploidization as a retraction force in plant genome evolution: sequence rearrangements in triticale.
    Bento M; Pereira HS; Rocheta M; Gustafson P; Viegas W; Silva M
    PLoS One; 2008 Jan; 3(1):e1402. PubMed ID: 18167561
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel miniature transposon-like element discovered in the coding sequence of a gene that encodes for 5-formyltetrahydrofolate in wheat.
    Domb K; Keidar-Friedman D; Kashkush K
    BMC Plant Biol; 2019 Nov; 19(1):461. PubMed ID: 31675912
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Morgane, a new LTR retrotransposon group, and its subfamilies in wheats.
    Sabot F; Sourdille P; Chantret N; Bernard M
    Genetica; 2006; 128(1-3):439-47. PubMed ID: 17028971
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genomic diversity of Ac-like transposable elements in sphaerococcum mutant forms of common wheat (Triticum aestivum L.) and triticale (X Triticosecale Witt.).
    Bonchev G; Stoilov L; Angelova Z; Georgiev S
    J Appl Genet; 2012 Feb; 53(1):9-17. PubMed ID: 21971991
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genome-wide analysis of short interspersed nuclear elements SINES revealed high sequence conservation, gene association and retrotranspositional activity in wheat.
    Ben-David S; Yaakov B; Kashkush K
    Plant J; 2013 Oct; 76(2):201-10. PubMed ID: 23855320
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Marker utility of miniature inverted-repeat transposable elements for wheat biodiversity and evolution.
    Yaakov B; Ceylan E; Domb K; Kashkush K
    Theor Appl Genet; 2012 May; 124(7):1365-73. PubMed ID: 22286503
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polyploidization-induced genome variation in triticale.
    Ma XF; Fang P; Gustafson JP
    Genome; 2004 Oct; 47(5):839-48. PubMed ID: 15499398
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genomic skimming for identification of medium/highly abundant transposable elements in Arundo donax and Arundo plinii.
    Lwin AK; Bertolini E; Pè ME; Zuccolo A
    Mol Genet Genomics; 2017 Feb; 292(1):157-171. PubMed ID: 27778102
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Size matters in Triticeae polyploids: larger genomes have higher remodeling.
    Bento M; Gustafson JP; Viegas W; Silva M
    Genome; 2011 Mar; 54(3):175-83. PubMed ID: 21423280
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.