BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 16035016)

  • 1. A tiny excited-state barrier can induce a multiexponential decay of the retinal chromophore: a quantum dynamics investigation.
    Olivucci M; Lami A; Santoro F
    Angew Chem Int Ed Engl; 2005 Aug; 44(32):5118-21. PubMed ID: 16035016
    [No Abstract]   [Full Text] [Related]  

  • 2. Excited-state singlet manifold and oscillatory features of a nonatetraeniminium retinal chromophore model.
    Cembran A; Bernardi F; Olivucci M; Garavelli M
    J Am Chem Soc; 2003 Oct; 125(41):12509-19. PubMed ID: 14531695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonadiabatic ab initio dynamics of a model protonated Schiff base of 9-cis retinal.
    Chung WC; Nanbu S; Ishida T
    J Phys Chem A; 2010 Aug; 114(32):8190-201. PubMed ID: 20666503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A molecular spring for vision.
    Röhrig UF; Guidoni L; Laio A; Frank I; Rothlisberger U
    J Am Chem Soc; 2004 Dec; 126(47):15328-9. PubMed ID: 15563129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of the beta-ionone ring in the photochemical reaction of rhodopsin.
    Send R; Sundholm D
    J Phys Chem A; 2007 Jan; 111(1):27-33. PubMed ID: 17201384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the rhodopsin cavity with reduced retinal models at the CASPT2//CASSCF/AMBER level of theory.
    Ferré N; Olivucci M
    J Am Chem Soc; 2003 Jun; 125(23):6868-9. PubMed ID: 12783530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoisomerization mechanism of 11-cis-locked artificial retinal chromophores: acceleration and primary photoproduct assignment.
    De Vico L; Garavelli M; Bernardi F; Olivucci M
    J Am Chem Soc; 2005 Mar; 127(8):2433-42. PubMed ID: 15724998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excited-state properties and environmental effects for protonated schiff bases: a theoretical study.
    Aquino AJ; Barbatti M; Lischka H
    Chemphyschem; 2006 Oct; 7(10):2089-96. PubMed ID: 16941558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoisomerization efficiency in UV-absorbing visual pigments: protein-directed isomerization of an unprotonated retinal Schiff base.
    Tsutsui K; Imai H; Shichida Y
    Biochemistry; 2007 May; 46(21):6437-45. PubMed ID: 17474760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TD-DFT calculations of the potential energy curves for the trans-cis photo-isomerization of protonated Schiff base of retinal.
    Tachikawa H; Iyama T
    J Photochem Photobiol B; 2004 Oct; 76(1-3):55-60. PubMed ID: 15488716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonadiabatic ab initio dynamics of two models of Schiff base retinal.
    Ishida T; Nanbu S; Nakamura H
    J Phys Chem A; 2009 Apr; 113(16):4356-66. PubMed ID: 19298071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photochemistry of visual pigment chromophore models by ab initio molecular dynamics.
    Weingart O; Schapiro I; Buss V
    J Phys Chem B; 2007 Apr; 111(14):3782-8. PubMed ID: 17388554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Absorption of schiff-base retinal chromophores in vacuo.
    Andersen LH; Nielsen IB; Kristensen MB; El Ghazaly MO; Haacke S; Nielsen MB; Petersen MA
    J Am Chem Soc; 2005 Sep; 127(35):12347-50. PubMed ID: 16131214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the molecular mechanism for color distinction in humans.
    Trabanino RJ; Vaidehi N; Goddard WA
    J Phys Chem B; 2006 Aug; 110(34):17230-9. PubMed ID: 16928022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vibrational analysis of excited and ground electronic states of all-trans retinal protonated Schiff-bases.
    Kraack JP; Buckup T; Motzkus M
    Phys Chem Chem Phys; 2011 Dec; 13(48):21402-10. PubMed ID: 22033578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid state 15N NMR evidence for a complex Schiff base counterion in the visual G-protein-coupled receptor rhodopsin.
    Creemers AF; Klaassen CH; Bovee-Geurts PH; Kelle R; Kragl U; Raap J; de Grip WJ; Lugtenburg J; de Groot HJ
    Biochemistry; 1999 Jun; 38(22):7195-9. PubMed ID: 10353830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inherent chirality of the retinal chromophore in rhodopsin-A nonempirical theoretical analysis of chiroptical data.
    Buss V
    Chirality; 2001 Jan; 13(1):13-23. PubMed ID: 11135409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Counterion controlled photoisomerization of retinal chromophore models: a computational investigation.
    Cembran A; Bernardi F; Olivucci M; Garavelli M
    J Am Chem Soc; 2004 Dec; 126(49):16018-37. PubMed ID: 15584736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The retinal conformation and its environment in rhodopsin in light of a new 2.2 A crystal structure.
    Okada T; Sugihara M; Bondar AN; Elstner M; Entel P; Buss V
    J Mol Biol; 2004 Sep; 342(2):571-83. PubMed ID: 15327956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between the excited state relaxation paths of rhodopsin and isorhodopsin.
    Strambi A; Coto PB; Frutos LM; Ferré N; Olivucci M
    J Am Chem Soc; 2008 Mar; 130(11):3382-8. PubMed ID: 18302369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.