These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 16035228)

  • 1. New aspects of vulnerability in heterogeneous models of ventricular wall and its modulation by loss of cardiac sodium channel function.
    Kapela A; Tsoukias N; Bezerianos A
    Med Biol Eng Comput; 2005 May; 43(3):387-94. PubMed ID: 16035228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. What happens when cardiac Na channels lose their function? 1--numerical studies of the vulnerable period in tissue expressing mutant channels.
    Starmer CF; Colatsky TJ; Grant AO
    Cardiovasc Res; 2003 Jan; 57(1):82-91. PubMed ID: 12504817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ischemic modulation of vulnerable period and the effects of pharmacological treatment of ischemia-induced arrhythmias: a simulation study.
    Cimponeriu A; Starmer CF; Bezerianos A
    IEEE Trans Biomed Eng; 2003 Feb; 50(2):168-77. PubMed ID: 12665030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The canine virtual ventricular wall: a platform for dissecting pharmacological effects on propagation and arrhythmogenesis.
    Benson AP; Aslanidi OV; Zhang H; Holden AV
    Prog Biophys Mol Biol; 2008; 96(1-3):187-208. PubMed ID: 17915298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. What happens when cardiac Na channel function is compromised? 2. Numerical studies of the vulnerable period in tissue altered by drugs.
    Starmer CF; Grant AO; Colatsky TJ
    Cardiovasc Res; 2003 Mar; 57(4):1062-71. PubMed ID: 12650884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A proarrhythmic response to sodium channel blockade: modulation of the vulnerable period in guinea pig ventricular myocardium.
    Nesterenko VV; Lastra AA; Rosenshtraukh LV; Starmer CF
    J Cardiovasc Pharmacol; 1992 May; 19(5):810-20. PubMed ID: 1381780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling changes in transmural propagation and susceptibility to arrhythmia induced by volatile anaesthetics in ventricular tissue.
    Zhang H; Tao T; Kharche S; Harrison SM
    J Theor Biol; 2009 Mar; 257(2):279-91. PubMed ID: 19135456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dispersion of cardiac action potential duration and the initiation of re-entry: a computational study.
    Clayton RH; Holden AV
    Biomed Eng Online; 2005 Feb; 4():11. PubMed ID: 15720712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell-to-cell heterogeneity in ion channel conductance impacts substrate vulnerability to arrhythmia.
    Pullinger TK; Sobie EA
    Am J Physiol Heart Circ Physiol; 2024 Jul; 327(1):H242-H254. PubMed ID: 38758124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATX-II effects on the apparent location of M cells in a computational model of a human left ventricular wedge.
    Dos Santos RW; Otaviano Campos F; Neumann Ciuffo L; Nygren A; Giles W; Koch H
    J Cardiovasc Electrophysiol; 2006 May; 17 Suppl 1():S86-S95. PubMed ID: 16686688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of amiodarone on short QT syndrome variant 3 in human ventricles: a simulation study.
    Luo C; Wang K; Zhang H
    Biomed Eng Online; 2017 Jun; 16(1):69. PubMed ID: 28592292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whole heart action potential duration restitution properties in cardiac patients: a combined clinical and modelling study.
    Nash MP; Bradley CP; Sutton PM; Clayton RH; Kallis P; Hayward MP; Paterson DJ; Taggart P
    Exp Physiol; 2006 Mar; 91(2):339-54. PubMed ID: 16452121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sodium channel blockade enhances dispersion of the cardiac action potential duration. A computer simulation study.
    Müller A; Dhein S
    Basic Res Cardiol; 1993; 88(1):11-22. PubMed ID: 8385925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The effects of hypokalemia on the Na+ channel in cardiac tissue--a computer simulation study].
    Ma L; Yang L; Jin Y; Chen X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Feb; 26(1):1-5. PubMed ID: 19334542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vulnerability to re-entry in simulated two-dimensional cardiac tissue: effects of electrical restitution and stimulation sequence.
    Tran DX; Yang MJ; Weiss JN; Garfinkel A; Qu Z
    Chaos; 2007 Dec; 17(4):043115. PubMed ID: 18163779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reentry in heterogeneous cardiac tissue described by the Luo-Rudy ventricular action potential model.
    Ten Tusscher KH; Panfilov AV
    Am J Physiol Heart Circ Physiol; 2003 Feb; 284(2):H542-8. PubMed ID: 12388228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Propagation of normal beats and re-entry in a computational model of ventricular cardiac tissue with regional differences in action potential shape and duration.
    Clayton RH; Holden AV
    Prog Biophys Mol Biol; 2004; 85(2-3):473-99. PubMed ID: 15142758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of transmural electrical heterogeneities and electrotonic interactions on the dispersion of cardiac repolarization and action potential duration: A simulation study.
    Colli Franzone P; Pavarino LF; Taccardi B
    Math Biosci; 2006 Nov; 204(1):132-65. PubMed ID: 16904130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proarrhythmic response to sodium channel blockade. Theoretical model and numerical experiments.
    Starmer CF; Lastra AA; Nesterenko VV; Grant AO
    Circulation; 1991 Sep; 84(3):1364-77. PubMed ID: 1653123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proarrhythmic response to potassium channel blockade. Numerical studies of polymorphic tachyarrhythmias.
    Starmer CF; Romashko DN; Reddy RS; Zilberter YI; Starobin J; Grant AO; Krinsky VI
    Circulation; 1995 Aug; 92(3):595-605. PubMed ID: 7634474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.