These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 16035656)
41. Roles of two white-rot basidiomycete fungi in decolorisation and detoxification of olive mill waste water. Kissi M; Mountadar M; Assobhei O; Gargiulo E; Palmieri G; Giardina P; Sannia G Appl Microbiol Biotechnol; 2001 Oct; 57(1-2):221-6. PubMed ID: 11693925 [TBL] [Abstract][Full Text] [Related]
42. A new process for the management of olive oil mill waste water and recovery of natural antioxidants. Agalias A; Magiatis P; Skaltsounis AL; Mikros E; Tsarbopoulos A; Gikas E; Spanos I; Manios T J Agric Food Chem; 2007 Apr; 55(7):2671-6. PubMed ID: 17348673 [TBL] [Abstract][Full Text] [Related]
43. Biological treatment of two-phase olive mill wastewater (TPOMW, alpeorujo): polyhydroxyalkanoates (PHAs) production by Azotobacter strains. Cerrone F; Sánchez-Peinado Mdel M; Juárez-Jimenez B; González-López J; Pozo C J Microbiol Biotechnol; 2010 Mar; 20(3):594-601. PubMed ID: 20372033 [TBL] [Abstract][Full Text] [Related]
44. Reduction of organic pollutants in Olive Mill Wastewater by using different mineral substrates as adsorbents. Santi CA; Cortes S; D'Acqui LP; Sparvoli E; Pushparaj B Bioresour Technol; 2008 Apr; 99(6):1945-51. PubMed ID: 17499501 [TBL] [Abstract][Full Text] [Related]
45. Improved combined chemical and biological treatments of olive oil mill wastewaters. Bressan M; Liberatore L; d'Alessandro N; Tonucci L; Belli C; Ranalli G J Agric Food Chem; 2004 Mar; 52(5):1228-33. PubMed ID: 14995126 [TBL] [Abstract][Full Text] [Related]
46. Olive mill wastewater degradation by Fenton oxidation with zero-valent iron and hydrogen peroxide. Kallel M; Belaid C; Boussahel R; Ksibi M; Montiel A; Elleuch B J Hazard Mater; 2009 Apr; 163(2-3):550-4. PubMed ID: 18722712 [TBL] [Abstract][Full Text] [Related]
47. Olive oil mill wastewater for soil nitrogen and carbon conservation. Aguilar MJ J Environ Manage; 2009 Jun; 90(8):2845-8. PubMed ID: 19339103 [TBL] [Abstract][Full Text] [Related]
48. Simultaneous optimization of multiple performance characteristics in coagulation-flocculation process for Indian paper industry wastewater. Saraswathi R; Saseetharan MK Water Sci Technol; 2012; 66(6):1231-8. PubMed ID: 22828300 [TBL] [Abstract][Full Text] [Related]
49. Ecological removal of recalcitrant phenolic compounds of treated olive mill wastewater by Pediococcus pentosaceus. Ben Othman N; Ayed L; Assas N; Kachouri F; Hammami M; Hamdi M Bioresour Technol; 2008 May; 99(8):2996-3001. PubMed ID: 17686628 [TBL] [Abstract][Full Text] [Related]
50. Extraction of antioxidants from olive mill wastewater and electro-coagulation of exhausted fraction to reduce its toxicity on anaerobic digestion. Khoufi S; Aloui F; Sayadi S J Hazard Mater; 2008 Mar; 151(2-3):531-9. PubMed ID: 17629620 [TBL] [Abstract][Full Text] [Related]
51. Detoxification of olive mill wastewater using superabsorbent polymers. Davies LC; Novais JM; Martins-Dias S Environ Technol; 2004 Jan; 25(1):89-100. PubMed ID: 15027653 [TBL] [Abstract][Full Text] [Related]
52. An eco-compatible process for the depuration of wastewater from olive mill industry. Ena A; Pintucci C; Faraloni C; Torzillo G Water Sci Technol; 2009; 60(4):1055-63. PubMed ID: 19700845 [TBL] [Abstract][Full Text] [Related]
53. Characterization and lime treatment of olive mill wastewater. Aktas ES; Imre S; Ersoy L Water Res; 2001 Jun; 35(9):2336-40. PubMed ID: 11358317 [TBL] [Abstract][Full Text] [Related]
54. Enhancement of anaerobic treatability of olive oil mill effluents by addition of Ca(OH)2 and bentonite without intermediate solid/liquid separation. Beccari M; Majone M; Papini MP; Torrisi L Water Sci Technol; 2001; 43(11):275-82. PubMed ID: 11443973 [TBL] [Abstract][Full Text] [Related]
55. Acute toxicity removal in textile finishing wastewater by Fenton's oxidation, ozone and coagulation-flocculation processes. Meriç S; Selçuk H; Belgiorno V Water Res; 2005 Mar; 39(6):1147-53. PubMed ID: 15766969 [TBL] [Abstract][Full Text] [Related]
56. Efficient removal of pollutants from olive washing wastewater in bubble-column bioreactor by Trametes versicolor. Cerrone F; Barghini P; Pesciaroli C; Fenice M Chemosphere; 2011 Jun; 84(2):254-9. PubMed ID: 21524782 [TBL] [Abstract][Full Text] [Related]
57. Phenolic removal in a model olive oil mill wastewater using Pleurotus ostreatus in bioreactor cultures and biological evaluation of the process. Aggelis G; Iconomou D; Christou M; Bokas D; Kotzailias S; Christou G; Tsagou V; Papanikolaou S Water Res; 2003 Sep; 37(16):3897-904. PubMed ID: 12909108 [TBL] [Abstract][Full Text] [Related]
58. Combined biological and physico-chemical treatment of baker's yeast wastewater. Kalyuzhnyi S; Gladchenko M; Starostina E; Shcherbakov S; Versprille A Water Sci Technol; 2005; 52(1-2):175-81. PubMed ID: 16180425 [TBL] [Abstract][Full Text] [Related]
59. Lignin modifying enzymes of Coriolopsis polyzona and their role in olive oil mill wastewaters decolourisation. Jaouani A; Tabka MG; Penninckx MJ Chemosphere; 2006 Mar; 62(9):1421-30. PubMed ID: 16038961 [TBL] [Abstract][Full Text] [Related]
60. Biodegradation of phenolic compounds from coking wastewater by immobilized white rot fungus Phanerochaete chrysosporium. Lu Y; Yan L; Wang Y; Zhou S; Fu J; Zhang J J Hazard Mater; 2009 Jun; 165(1-3):1091-7. PubMed ID: 19062164 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]