These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 16035794)

  • 61. Computation of binding free energy with molecular dynamics and grand canonical Monte Carlo simulations.
    Deng Y; Roux B
    J Chem Phys; 2008 Mar; 128(11):115103. PubMed ID: 18361618
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Enhanced protein steering: cooperative electrostatic and van der Waals forces in antigen-antibody complexes.
    Persson BA; Jönsson B; Lund M
    J Phys Chem B; 2009 Jul; 113(30):10459-64. PubMed ID: 19583233
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Simulation of colloidal fouling by coupling a dynamically updating velocity profile and electric field interactions with Force Bias Monte Carlo methods for membrane filtration.
    Boyle PM; Houchens BC; Kim AS
    J Colloid Interface Sci; 2013 Jun; 399():77-86. PubMed ID: 23540433
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The effect of hydrogen bonding on the solvent-mediated interaction of composite plates.
    Djikaev YS; Ruckenstein E
    J Colloid Interface Sci; 2009 Aug; 336(2):575-83. PubMed ID: 19446832
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Linear interaction energy models for beta-secretase (BACE) inhibitors: Role of van der Waals, electrostatic, and continuum-solvation terms.
    Tounge BA; Rajamani R; Baxter EW; Reitz AB; Reynolds CH
    J Mol Graph Model; 2006 May; 24(6):475-84. PubMed ID: 16293430
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Improved interaction potentials for charged residues in proteins.
    Jensen KP
    J Phys Chem B; 2008 Feb; 112(6):1820-7. PubMed ID: 18205348
    [TBL] [Abstract][Full Text] [Related]  

  • 67. In silico prediction of drug solubility: 1. Free energy of hydration.
    Westergren J; Lindfors L; Höglund T; Lüder K; Nordholm S; Kjellander R
    J Phys Chem B; 2007 Feb; 111(7):1872-82. PubMed ID: 17266351
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Repulsion between oppositely charged macromolecules or particles.
    Trulsson M; Jönsson B; Akesson T; Forsman J; Labbez C
    Langmuir; 2007 Nov; 23(23):11562-9. PubMed ID: 17918865
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Quasistatic computer simulations of shear behavior of water nanoconfined between mica surfaces.
    Fedyanin I; Pertsin A; Grunze M
    J Chem Phys; 2011 Nov; 135(17):174704. PubMed ID: 22070314
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Electrodiffusion of lipids on membrane surfaces.
    Zhou YC
    J Chem Phys; 2012 May; 136(20):205103. PubMed ID: 22667591
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Statistical thermodynamics through computer simulation to characterize phospholipid interactions in membranes.
    Mezei M; Jedlovszky P
    Methods Mol Biol; 2007; 400():127-44. PubMed ID: 17951731
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Probing the lipid membrane dipole potential by atomic force microscopy.
    Yang Y; Mayer KM; Wickremasinghe NS; Hafner JH
    Biophys J; 2008 Dec; 95(11):5193-9. PubMed ID: 18805919
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The Wolf method applied to the type I methane and carbon dioxide gas hydrates.
    Sadeghifar A; Dadvar M; Karimi S; Ghobadi AF
    J Mol Graph Model; 2012 Sep; 38():455-64. PubMed ID: 23142621
    [TBL] [Abstract][Full Text] [Related]  

  • 74. On the analytical representation of free energy profiles with a Morse/long-range model: application to the water dimer.
    Tritzant-Martinez Y; Zeng T; Broom A; Meiering E; Le Roy RJ; Roy PN
    J Chem Phys; 2013 Jun; 138(23):234103. PubMed ID: 23802947
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Driving force for crystallization of anionic lipid membranes revealed by atomistic simulations.
    Qiao BF; Olvera de la Cruz M
    J Phys Chem B; 2013 May; 117(17):5073-80. PubMed ID: 23565965
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Monte Carlo computer simulation of the aqueous hydration of the glycine zwitterion at 25 degree C.
    Mezei M; Mehrotra PK; Beveridge DL
    J Biomol Struct Dyn; 1984 Aug; 2(1):1-27. PubMed ID: 6400925
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Influence of the long-range corrections on the interfacial properties of molecular models using Monte Carlo simulation.
    Míguez JM; Piñeiro MM; Blas FJ
    J Chem Phys; 2013 Jan; 138(3):034707. PubMed ID: 23343293
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Simulating van der Waals interactions in water/hydrocarbon-based complex fluids.
    Pasichnyk I; Everaers R; Maggs AC
    J Phys Chem B; 2008 Feb; 112(6):1761-4. PubMed ID: 18201079
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A NEMO potential that includes the dipole-quadrupole and quadrupole-quadrupole polarizability.
    Holt A; Boström J; Karlström G; Lindh R
    J Comput Chem; 2010 Jun; 31(8):1583-91. PubMed ID: 20222056
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Classical van der Waals interactions between spherical bodies of dipolar fluid.
    Stenhammar J; Trulsson M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011117. PubMed ID: 21867123
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.