These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Effect of common noise on phase synchronization in coupled chaotic oscillators. Park K; Lai YC; Krishnamoorthy S; Kandangath A Chaos; 2007 Mar; 17(1):013105. PubMed ID: 17411241 [TBL] [Abstract][Full Text] [Related]
5. Effect of noise on defect chaos in a reaction-diffusion model. Wang H; Ouyang Q Chaos; 2005 Jun; 15(2):23702. PubMed ID: 16035892 [TBL] [Abstract][Full Text] [Related]
6. Noise-controlled oscillations and their bifurcations in coupled phase oscillators. Zaks MA; Neiman AB; Feistel S; Schimansky-Geier L Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):066206. PubMed ID: 14754296 [TBL] [Abstract][Full Text] [Related]
7. Estimation of coupling between oscillators from short time series via phase dynamics modeling: limitations and application to EEG data. Smirnov DA; Bodrov MB; Velazquez JL; Wennberg RA; Bezruchko BP Chaos; 2005 Jun; 15(2):24102. PubMed ID: 16035902 [TBL] [Abstract][Full Text] [Related]
9. Lag and anticipating synchronization without time-delay coupling. Corron NJ; Blakely JN; Pethel SD Chaos; 2005 Jun; 15(2):23110. PubMed ID: 16035886 [TBL] [Abstract][Full Text] [Related]
10. Frequency dependence of phase-synchronization time in nonlinear dynamical systems. Park K; Lai YC; Krishnamoorthy S Chaos; 2007 Dec; 17(4):043111. PubMed ID: 18163775 [TBL] [Abstract][Full Text] [Related]
11. Stochastic resonance: theory and numerics. Casado-Pascual J; Gómez-Ordóñez J; Morillo M Chaos; 2005 Jun; 15(2):26115. PubMed ID: 16035917 [TBL] [Abstract][Full Text] [Related]
12. Stochastic phase dynamics and noise-induced mixed-mode oscillations in coupled oscillators. Yu N; Kuske R; Li YX Chaos; 2008 Mar; 18(1):015112. PubMed ID: 18377093 [TBL] [Abstract][Full Text] [Related]
13. Frequency-selective response of periodically forced coupled FHN models via system size multi-resonance. Zhao G; Hou Z; Xin H Phys Chem Chem Phys; 2005 Oct; 7(20):3634-8. PubMed ID: 16294243 [TBL] [Abstract][Full Text] [Related]
14. Transition from phase to generalized synchronization in time-delay systems. Senthilkumar DV; Lakshmanan M; Kurths J Chaos; 2008 Jun; 18(2):023118. PubMed ID: 18601485 [TBL] [Abstract][Full Text] [Related]
16. Delay-induced spatial correlations in one-dimensional stochastic networks with nearest-neighbor coupling. Pototsky A; Janson NB Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066203. PubMed ID: 20365250 [TBL] [Abstract][Full Text] [Related]
17. Analytical and simulation results for the stochastic spatial Fitzhugh-Nagumo model neuron. Tuckwell HC Neural Comput; 2008 Dec; 20(12):3003-33. PubMed ID: 18624663 [TBL] [Abstract][Full Text] [Related]
18. Dynamics of oscillator chains from high frequency initial conditions: comparison of phi4 and FPU-beta models. Lichtenberg AJ; Mirnov VV; Day C Chaos; 2005 Mar; 15(1):15109. PubMed ID: 15836286 [TBL] [Abstract][Full Text] [Related]
19. Engineered internal noise stochastic resonator in gene network: a model study. Wang Z; Hou Z; Xin H; Zhang Z Biophys Chem; 2007 Feb; 125(2-3):281-5. PubMed ID: 17081673 [TBL] [Abstract][Full Text] [Related]
20. Oscillator clustering in a resource distribution chain. Postnov DE; Sosnovtseva OV; Mosekilde E Chaos; 2005 Mar; 15(1):13704. PubMed ID: 15836272 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]