BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 16036432)

  • 1. Expression of FKBP12 and ryanodine receptors (RyRs) in the spinal cord of MND patients.
    Kihira T; Utunomiya H; Kondo T
    Amyotroph Lateral Scler Other Motor Neuron Disord; 2005 Jun; 6(2):94-9. PubMed ID: 16036432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FKBP12 immunoreactivity in the human spinal cord of motor neuron disease patients.
    Kihira T; Hironishi M; Utunomiya H; Kondo T
    Neuropathology; 2002 Dec; 22(4):269-74. PubMed ID: 12564766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Depletion of FKBP does not affect the interaction between isolated ryanodine receptors.
    Hu XF; Liang X; Chen KY; Zhu PH; Hu J
    Biochem Biophys Res Commun; 2005 Oct; 336(1):128-33. PubMed ID: 16125143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ modulation of the human cardiac ryanodine receptor (hRyR2) by FKBP12.6.
    George CH; Sorathia R; Bertrand BM; Lai FA
    Biochem J; 2003 Mar; 370(Pt 2):579-89. PubMed ID: 12443530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of glutamate receptor subtypes in the spinal cord of control and mnd mice, a model of motor neuron disorder.
    Mennini T; Bigini P; Ravizza T; Vezzani A; Calvaresi N; Tortarolo M; Bendotti C
    J Neurosci Res; 2002 Nov; 70(4):553-60. PubMed ID: 12404509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Widespread loss of neuronal populations in the spinal ventral horn in sporadic motor neuron disease. A morphometric study.
    Stephens B; Guiloff RJ; Navarrete R; Newman P; Nikhar N; Lewis P
    J Neurol Sci; 2006 May; 244(1-2):41-58. PubMed ID: 16487542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cortical selective vulnerability in motor neuron disease: a morphometric study.
    Maekawa S; Al-Sarraj S; Kibble M; Landau S; Parnavelas J; Cotter D; Everall I; Leigh PN
    Brain; 2004 Jun; 127(Pt 6):1237-51. PubMed ID: 15130949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of FKBP12/12.6 from endothelial ryanodine receptors leads to an intracellular calcium leak and endothelial dysfunction.
    Long C; Cook LG; Wu GY; Mitchell BM
    Arterioscler Thromb Vasc Biol; 2007 Jul; 27(7):1580-6. PubMed ID: 17478757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of ryanodine receptor activation on neurotransmitter release and neuronal cell death following kainic acid-induced status epilepticus.
    Mori F; Okada M; Tomiyama M; Kaneko S; Wakabayashi K
    Epilepsy Res; 2005 Jun; 65(1-2):59-70. PubMed ID: 15979854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motor neuron disease: a primary disorder of corticomotoneurons?
    Pamphlett R; Kril J; Hng TM
    Muscle Nerve; 1995 Mar; 18(3):314-8. PubMed ID: 7870109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of ryanodine receptors by FK506 binding proteins.
    Chelu MG; Danila CI; Gilman CP; Hamilton SL
    Trends Cardiovasc Med; 2004 Aug; 14(6):227-34. PubMed ID: 15451514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ryanodine receptor binding to FKBP12 is modulated by channel activation state.
    Jones JL; Reynolds DF; Lai FA; Blayney LM
    J Cell Sci; 2005 Oct; 118(Pt 20):4613-9. PubMed ID: 16176935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bcl-2 and FKBP12 bind to IP3 and ryanodine receptors at overlapping sites: the complexity of protein-protein interactions for channel regulation.
    Vervliet T; Parys JB; Bultynck G
    Biochem Soc Trans; 2015 Jun; 43(3):396-404. PubMed ID: 26009182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Central domain of the human cardiac muscle ryanodine receptor does not mediate interaction with FKBP12.6.
    Zissimopoulos S; Lai FA
    Cell Biochem Biophys; 2005; 43(2):203-19. PubMed ID: 16049346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estrogen receptor-alpha and -beta immunoreactive neurons in the brainstem and spinal cord of male and female mice: relationships to monoaminergic, cholinergic, and spinal projection systems.
    Vanderhorst VG; Gustafsson JA; Ulfhake B
    J Comp Neurol; 2005 Jul; 488(2):152-79. PubMed ID: 15924341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defective regulation of interdomain interactions within the ryanodine receptor plays a key role in the pathogenesis of heart failure.
    Oda T; Yano M; Yamamoto T; Tokuhisa T; Okuda S; Doi M; Ohkusa T; Ikeda Y; Kobayashi S; Ikemoto N; Matsuzaki M
    Circulation; 2005 Jun; 111(25):3400-10. PubMed ID: 15967847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of phosphodiesterase isoforms 2, 5, and 9 in the regulation of NO-dependent and NO-independent cGMP production in the rat cervical spinal cord.
    de Vente J; Markerink-van Ittersum M; Vles JS
    J Chem Neuroanat; 2006 Jun; 31(4):275-303. PubMed ID: 16621445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution of calcium channel Ca(V)1.3 immunoreactivity in the rat spinal cord and brain stem.
    Sukiasyan N; Hultborn H; Zhang M
    Neuroscience; 2009 Mar; 159(1):217-35. PubMed ID: 19136044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Intracellular calcium-releasing channels as cellular targets for immunophilins: a molecular, functional and structural analysis].
    Bultynck G; Van Acker K; Missiaen L; Callewaert G; Parys JB; De Smedt H
    Verh K Acad Geneeskd Belg; 2004; 66(4):277-303. PubMed ID: 15553100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for pathological involvement of the spinal cord in motor neuron disease-inclusion dementia.
    Holton JL; Révész T; Crooks R; Scaravilli F
    Acta Neuropathol; 2002 Mar; 103(3):221-7. PubMed ID: 11907801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.