These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 16036902)

  • 1. Energy cost and muscular activity required for leg swing during walking.
    Gottschall JS; Kram R
    J Appl Physiol (1985); 2005 Jul; 99(1):23-30. PubMed ID: 16036902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic energy and muscular activity required for leg swing in running.
    Modica JR; Kram R
    J Appl Physiol (1985); 2005 Jun; 98(6):2126-31. PubMed ID: 15894536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy cost and muscular activity required for propulsion during walking.
    Gottschall JS; Kram R
    J Appl Physiol (1985); 2003 May; 94(5):1766-72. PubMed ID: 12506042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of adding mass to the legs on the energetics and biomechanics of walking.
    Browning RC; Modica JR; Kram R; Goswami A
    Med Sci Sports Exerc; 2007 Mar; 39(3):515-25. PubMed ID: 17473778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees.
    Fey NP; Klute GK; Neptune RR
    Clin Biomech (Bristol); 2011 Dec; 26(10):1025-32. PubMed ID: 21777999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic cost of generating muscular force in human walking: insights from load-carrying and speed experiments.
    Griffin TM; Roberts TJ; Kram R
    J Appl Physiol (1985); 2003 Jul; 95(1):172-83. PubMed ID: 12794096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of feedback and feedforward strategies to locomotor adaptations.
    Lam T; Anderschitz M; Dietz V
    J Neurophysiol; 2006 Feb; 95(2):766-73. PubMed ID: 16424453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in kinematics, metabolic cost and external work during walking with a forward assistive force.
    Zirker CA; Bennett BC; Abel MF
    J Appl Biomech; 2013 Aug; 29(4):481-9. PubMed ID: 23183216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Minimizing center of mass vertical movement increases metabolic cost in walking.
    Ortega JD; Farley CT
    J Appl Physiol (1985); 2005 Dec; 99(6):2099-107. PubMed ID: 16051716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altered muscle activation characteristics associated with single volitional forward stepping in middle-aged adults.
    Chu YH; Tang PF; Chen HY; Cheng CH
    Clin Biomech (Bristol); 2009 Nov; 24(9):735-43. PubMed ID: 19665267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle force redistributes segmental power for body progression during walking.
    Neptune RR; Zajac FE; Kautz SA
    Gait Posture; 2004 Apr; 19(2):194-205. PubMed ID: 15013508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency.
    Sawicki GS; Ferris DP
    J Exp Biol; 2009 Jan; 212(Pt 1):21-31. PubMed ID: 19088207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Force adaptation in human walking with symmetrically applied downward forces on the pelvis.
    Vashista V; Agrawal N; Shaharudin S; Reisman DS; Agrawal SK
    IEEE Trans Neural Syst Rehabil Eng; 2013 Nov; 21(6):969-78. PubMed ID: 23529103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contributions of muscles and passive dynamics to swing initiation over a range of walking speeds.
    Fox MD; Delp SL
    J Biomech; 2010 May; 43(8):1450-5. PubMed ID: 20236644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle contributions to propulsion and braking during walking and running: insight from external force perturbations.
    Ellis RG; Sumner BJ; Kram R
    Gait Posture; 2014 Sep; 40(4):594-9. PubMed ID: 25096545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Explaining differences in the metabolic cost and efficiency of treadmill locomotion in children.
    Frost G; Bar-Or O; Dowling J; Dyson K
    J Sports Sci; 2002 Jun; 20(6):451-61. PubMed ID: 12137175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical energetic contributions from individual muscles and elastic prosthetic feet during symmetric unilateral transtibial amputee walking: a theoretical study.
    Zmitrewicz RJ; Neptune RR; Sasaki K
    J Biomech; 2007; 40(8):1824-31. PubMed ID: 17045595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contributions of individual muscles to hip joint contact force in normal walking.
    Correa TA; Crossley KM; Kim HJ; Pandy MG
    J Biomech; 2010 May; 43(8):1618-22. PubMed ID: 20176362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Additional energetic cost due to belt speed variations when walking on a treadmill.
    Crétual A; Fusco N
    J Electromyogr Kinesiol; 2011 Jun; 21(3):551-6. PubMed ID: 21435905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle mechanical advantage of human walking and running: implications for energy cost.
    Biewener AA; Farley CT; Roberts TJ; Temaner M
    J Appl Physiol (1985); 2004 Dec; 97(6):2266-74. PubMed ID: 15258124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.