BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 16037220)

  • 1. Oxidative pyrolysis and postpyrolytic derivatization techniques for the total analysis of maillard model systems: investigation of control parameters of maillard reaction pathways.
    Yaylayan VA; Haffenden L; Chu FL; Wnorowski A
    Ann N Y Acad Sci; 2005 Jun; 1043():41-54. PubMed ID: 16037220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonvolatile oxidation products of glucose in Maillard model systems: formation of saccharinic and aldonic acids and their corresponding lactones.
    Haffenden LJ; Yaylayan VA
    J Agric Food Chem; 2008 Mar; 56(5):1638-43. PubMed ID: 18251497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of formation of redox-active hydroxylated benzenes and pyrazine in 13C-labeled glycine/D-glucose model systems.
    Haffenden LJ; Yaylayan VA
    J Agric Food Chem; 2005 Dec; 53(25):9742-6. PubMed ID: 16332124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitation of furan and methylfuran formed in different precursor systems by proton transfer reaction mass spectrometry.
    Märk J; Pollien P; Lindinger C; Blank I; Märk T
    J Agric Food Chem; 2006 Apr; 54(7):2786-93. PubMed ID: 16569077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of pyrazines and a novel pyrrole in Maillard model systems of 1,3-dihydroxyacetone and 2-oxopropanal.
    Adams A; Polizzi V; van Boekel M; De Kimpe N
    J Agric Food Chem; 2008 Mar; 56(6):2147-53. PubMed ID: 18318495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model studies on the oxygen-induced formation of benzaldehyde from phenylacetaldehyde using pyrolysis GC-MS and FTIR.
    Chu FL; Yaylayan VA
    J Agric Food Chem; 2008 Nov; 56(22):10697-704. PubMed ID: 18954073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal decomposition of specifically phosphorylated D-glucoses and their role in the control of the Maillard reaction.
    Yaylayan VA; Machiels D; Istasse L
    J Agric Food Chem; 2003 May; 51(11):3358-66. PubMed ID: 12744667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elucidation of chemical pathways in the maillard reaction by 17O-NMR spectroscopy.
    Robert F; Vera FA; Kervella F; Davidek T; Blank I
    Ann N Y Acad Sci; 2005 Jun; 1043():63-72. PubMed ID: 16037223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of hydroxycinnamic acid-maillard reaction products in low-moisture baking model systems.
    Jiang D; Chiaro C; Maddali P; Prabhu KS; Peterson DG
    J Agric Food Chem; 2009 Nov; 57(21):9932-43. PubMed ID: 19817410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sugar fragmentation in the maillard reaction cascade: formation of short-chain carboxylic acids by a new oxidative alpha-dicarbonyl cleavage pathway.
    Davídek T; Robert F; Devaud S; Vera FA; Blank I
    J Agric Food Chem; 2006 Sep; 54(18):6677-84. PubMed ID: 16939326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of styrene during the Maillard reaction is negligible.
    Goldmann T; Davidek T; Gouezec E; Blank I; Bertholet MC; Stadler R
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2009 May; 26(5):583-94. PubMed ID: 19680933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the aroma-active compounds formed in the maillard reaction between glutathione and reducing sugars.
    Lee SM; Jo YJ; Kim YS
    J Agric Food Chem; 2010 Mar; 58(5):3116-24. PubMed ID: 20146478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring carbonyl-amine reaction between pyruvic acid and alpha-amino alcohols by FTIR spectroscopy--a possible route to Amadori products.
    Wnorowski A; Yaylayan VA
    J Agric Food Chem; 2003 Oct; 51(22):6537-43. PubMed ID: 14558775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of mass spectrometry to the study of the Maillard reaction in food.
    Fay LB; Brevard H
    Mass Spectrom Rev; 2005; 24(4):487-507. PubMed ID: 15389846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of 4(5)-methylimidazole and its precursors, α-dicarbonyl compounds, in Maillard model systems.
    Jang HW; Jiang Y; Hengel M; Shibamoto T
    J Agric Food Chem; 2013 Jul; 61(28):6865-72. PubMed ID: 23796138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of reaction conditions on the origin and yields of acetic acid generated by the maillard reaction.
    Davidek T; Devaud S; Robert F; Blank I
    Ann N Y Acad Sci; 2005 Jun; 1043():73-9. PubMed ID: 16037224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactivity of epicatechin in aqueous glycine and glucose maillard reaction models: quenching of C2, C3, and C4 sugar fragments.
    Totlani VM; Peterson DG
    J Agric Food Chem; 2005 May; 53(10):4130-5. PubMed ID: 15884850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of epicatechin reactions on the mechanisms of Maillard product formation in low moisture model systems.
    Totlani VM; Peterson DG
    J Agric Food Chem; 2007 Jan; 55(2):414-20. PubMed ID: 17227073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CE: a useful analytical tool for the characterization of Maillard reaction products in foods.
    Vallejo-Cordoba B; González-Córdova AF
    Electrophoresis; 2007 Nov; 28(22):4063-71. PubMed ID: 17960536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.